Toggle light / dark theme

Dr. Kara Spiller, PhD — Immunomodulatory Biomaterials In Regenerative Medicine — Drexel University

Immunomodulatory Biomaterials In Regenerative Medicine — Dr. Kara Spiller-Geisler, Ph.D., Drexel University School of Biomedical Engineering, Science and Health Systems.


Dr. Kara Spiller, PhD (https://drexel.edu/biomed/faculty/core/SpillerKara/) is Associate Professor in the Biomaterials and Regenerative Medicine Laboratory at Drexel University, in Philadelphia.

Dr. Spiller received her bachelor’s, master’s, and doctoral degrees in biomedical engineering from Drexel University where she conducted her doctoral research in the design of semi-degradable hydrogels for the repair of articular cartilage in the Biomaterials and Drug Delivery Laboratory at Drexel, and in the Shanghai Key Tissue Engineering Laboratory of Shanghai Jiao Tong University.

After completing her PhD, when she received the award for Most Outstanding Doctoral Graduate: Most Promise to Enhance Drexel’s Reputation, she conducted research in the design of scaffolds for bone tissue engineering as a Fulbright Fellow, in the Biomaterials, Biodegradables, and Biomimetics (the 3Bs) Research Group at the University of Minho in Guimaraes, Portugal. She also worked as a Postdoctoral Scientist at Columbia University.

Dr. Spiller is currently conducting research in the design of immuno-modulatory biomaterials, particularly for bone tissue engineering. Her research interests include cell-biomaterial interactions, biomaterial design, and international engineering education.

Single protein prompts mature brain cells to regenerate multiple cell types

A single protein can reverse the developmental clock on adult brain cells called astrocytes, morphing them into stem-like cells that produce neurons and other cell types, UT Southwestern researchers report in a PNAS study. The findings might someday lead to a way to regenerate brain tissue after disease or injury.

“We’re showing that it may be possible to reprogram the fate of this subset of brain , giving them the potential to rebuild the damaged brain,” said study leader and co-corresponding author Chun-Li Zhang, Ph.D., Professor of Molecular Biology and an Investigator in the Peter O’Donnell Jr. Brain Institute.

During development, mammalian stem cells readily proliferate to produce neurons throughout the brain and cells—called glia—that help support them. Glia help maintain optimal brain function by performing essential jobs like cleaning up waste and insulating nerve fibers. However, the mature brain largely loses that stem cell capacity. Only two small regenerative zones, or niches, remain in the adult brain, Dr. Zhang explained, leaving it with extremely limited capacity to heal itself following injury or disease.

Scientists are producing deadly zoonoses on this tiny German island

On a small, unassuming German island called Riems lies one of the oldest virus research institutes in the world. And also one of the most dangerous.

The Friedrich Loeffler Institute is closed to the public. To access the island, approved visitors must first cross a small stretch of the Baltic Sea via a dam, which can be closed immediately in case of an outbreak. To enter the facility, they must take a shower and put on protective clothing. Inside, scientists study some of the world’s most deadly viruses, including bird flu, Ebola and mad cow disease.


The German island of Riems is home to some of the most dangerous virology research on the planet.

The fractured genome of HeLa cells

Circa 2013 o,., o! Unlimited cell division. Basically this means a possibility for unlimited cell division throughout the human body if used in crispr.


Whole-genome sequencing of the widely used HeLa cell line provides a nucleotide-resolution view of a greatly mutated and in some places shattered genome.

Researchers develop pressure-quench process to enhance superconductivity toward goal of wasting zero energy

In the simplest terms, superconductivity between two or more objects means zero wasted electricity. It means electricity is being transferred between these objects with no loss of energy.

Many naturally occurring elements and minerals like lead and mercury have superconducting properties. And there are modern applications that currently use materials with superconducting properties, including MRI machines, maglev trains, electric motors and generators.

Usually, superconductivity in materials happens in low-temperature environments or at high temperatures at very high pressures. The holy grail of superconductivity today is to find or create materials that can transfer energy between each other in a non-pressurized environment.

/* */