Toggle light / dark theme

A Never-Before-Seen Type of Signal Has Been Detected in The Human Brain

Scientists develop the first CRISPR-Cas9-based gene drive in plants which may breed crops better able to withstand drought and disease.


Scientists have discovered a unique form of cell messaging occurring in the human brain that’s not been seen before. Excitingly, the discovery hints that our brains might be even more powerful units of computation than we realized.

Early last year, researchers from institutes in Germany and Greece reported a mechanism in the brain’s outer cortical cells that produces a novel ‘graded’ signal all on its own, one that could provide individual neurons with another way to carry out their logical functions.

By measuring the electrical activity in sections of tissue removed during surgery on epileptic patients and analysing their structure using fluorescent microscopy, the neurologists found individual cells in the cortex used not just the usual sodium ions to ‘fire’, but calcium as well.

Sanofi, Google Launch “Innovation Lab” Aimed at Drug Discovery

Sanofi will apply Google’s artificial intelligence (AI) and cloud computing capabilities toward developing new drugs, through a collaboration whose value was not disclosed.

The companies said they have agreed to create a virtual Innovation Lab to “radically” transform how future medicines and health services are developed and delivered.

Sanofi has articulated three goals for the collaboration with Google: better understand patients and diseases, increase Sanofi’s operational efficiency, and improve the experience of Sanofi patients and customers.

First CRISPR-Based Gene Drive Developed in Plants

For the first time, CRISPR-Cas9-based gene drive technology has been developed in plants. Enabling the inheritance of both copies of a target gene from a single parent could greatly reduce the generations needed for plant breeding. Establishing this genome editing technology in plants may allow for breeding resilient crops that are better able to withstand drought and disease.

#GenomeEditing #AgBio #CRISPR #Cas9


Gene drives have been established in insects, including fruit flies and mosquitoes, and mammals such as mice. Now, for the first time, the CRISPR-Cas9-based technology that disrupts Mendelian inheritance and allows for selective acquisition of target genes has been developed in plants. Establishing this genome editing technology in plants may allow for breeding resilient crops that are better able to withstand drought and disease.

The research is published in Nature Communications in the paper, “Selective inheritance of target genes from only one parent of sexually reproduced F1 progeny in Arabidopsis.”

“This work defies the genetic constraints of sexual reproduction that an offspring inherits 50% of their genetic materials from each parent,” said Yunde Zhao, PhD, professor of cell and developmental biology at the University of California, San Diego (UCSD). “This work enables inheritance of both copies of the desired genes from only a single parent. The findings can greatly reduce the generations needed for plant breeding.”

Mind-Blowing ‘Inflatable’ Spinal Cord Implant Could Make Pain Relief Widely Available

Scientists have revealed a fascinating new design for an incredibly tiny, inflatable spinal cord implant, suited for treating severe chronic back pain that doesn’t respond to medication.

The inflatable electronic device is part of a spinal cord stimulator (SCS) setup, a type of well-established therapy that delivers mild electric currents to a person’s spinal cord via implanted electrodes. That current is sent by a small, implanted pulse generator device, and the whole thing reduces pain because the electrical pulses help to mask pain signals traveling to the brain via the spinal cord.

If that all sounds rather invasive, that’s because it is. But this new device, designed by a team led by scientists from the University of Cambridge in the UK, could help to change that — with less invasive surgery requirements.

Radiation Speeds Up Biological Aging in Head and Neck Cancer

Changes in epigenetic age acceleration (EAA) were significant over time, with the biggest increase — 4.9 years — seen immediately after the completion of radiotherapy (PChanges in epigenetic age acceleration (EAA) were significant over time, with the biggest increase — 4.9 years — seen immediately after the completion of radiotherapy (P0.001), reported Canhua Xiao, RN, PhD, of Emory University School of Nursing in Atlanta, and colleagues.

The study also demonstrated that EAA was associated with greater inflammation and fatigue, even up to a year after treatment, they noted in Cancer.

While chronological age is a strong risk factor for chronic health problems, Xiao and colleagues said that it often differs from epigenetic age and may be a limited predictor of age-associated disorders. On the other hand, they noted that epigenetic clocks, based on blood DNA methylation measures, have become reliable aging biomarkers.

Statins Used to Lower Cholesterol Linked to Doubled Risk of Developing Dementia

If concerned, speak to your physician.


In patients with mild cognitive impairment, taking lipophilic statins more than doubles their risk of developing dementia compared to those who do not take statins. According to research presented at the Society of Nuclear Medicine and Molecular Imaging 2021 Annual Meeting, positron emission tomography (PET) scans of lipophilic statin users revealed a highly significant decline in metabolism in the area of the brain that is first impacted by Alzheimer’s disease.

Statins are medications used to lower cholesterol and reduce the risk of heart attack or stroke. They are the most commonly used drugs in the developed world, and nearly 50 percent of Americans over age 75 use a statin. Different types of statins are available based on a patient’s health needs, including hydrophilic statins that focus on the liver and lipophilic statins that are distributed to tissues throughout the body.

Lipophilic statins include simvastatin, fluvastatin, pitavastatin, lovastatin and atorvastatin. Hydrophilic statins include rosuvastatin and pravastatin.

Researchers engineer cells to destroy malignant tumor cells but leave the rest alone

Researchers at McMaster University have developed a promising new cancer immunotherapy that uses cancer-killing cells genetically engineered outside the body to find and destroy malignant tumors.

The modified “natural killer” can differentiate between and that are often intermingled in and around tumors, destroying only the targeted cells.

The natural killer cells’ ability to distinguish the , even from healthy cells that bear similar markers, brings new promise to this branch of immunotherapy, say members of the research team behind a paper published in the current issue of the journal iScience, newly posted on the PubMed database.

Gottlieb says parts of U.S. could see “very dense outbreaks” as Delta variant spreads

Washington — As the U.S. continues to navigate its way through the COVID-19 pandemic, Dr. Scott Gottlieb, the former commissioner of the Food and Drug Administration, said areas of the country could experience “very dense outbreaks” with the concerning Delta variant continuing to circulate.

“It’s going to be hyper-regionalized, where there are certain pockets of the country [where] we can have very dense outbreaks,” Gottlieb said Sunday on CBS News’ “Face the Nation.”

The most vulnerable areas continue to be those with low vaccination rates and low rates of immunity from prior infections. According to the Centers for Disease Control and Prevention, many southern states have vaccination rates that lag behind the national average.

Compound Tested for Alcoholic Liver Disease

Investigators at Cedars-Sinai and UC San Diego found that a synthetic compound given orally protected the liver against injury in an animal model for alcoholic hepatitis.

The study, co-authored by Dr. Ekihiro Seki, was published in the Proceedings of the Na… See More.


The most prevalent forms of ALD are fatty liver, alcoholic hepatitis and cirrhosis. Corticosteroids are the only treatment option for alcoholic hepatitis, or chronic inflammation of the liver, despite little evidence of long-term efficacy and considerable adverse side effects.

Investigators at Cedars-Sinai and the University of California, San Diego (UCSD), found that a synthetic compound given orally protected the liver against injury in an animal model for alcoholic hepatitis. The study was recently published in the Proceedings of the National Academy of Sciences. Ekihiro Seki, MD, PhD of Cedars-Sinai and Dennis A. Carson, MD, of UCSD are co-senior authors of the paper.

“Interleukin-22 (IL-22) is a beneficial cytokine that can help protect the body against invading pathogens, repair damage caused by intestinal or liver disease and potentially prevent the development of ALD,” said Seki, professor of Medicine and Biomedical Sciences.

Loss of circadian regulation allows for increase in glucose production during lung cancer

This research places the circadian clock as a central regulator of glucose production during lung cancer progression and provides important insight toward the development of novel therapeutics to target REV-ERBα to suppress cancer cell growth.


New research from the University of California, Irvine reveals how the circadian regulation of glucose production in the liver is lost during lung cancer progression, and how the resulting increase in glucose production may fuel cancer cell growth.

The new study titled, “Glucagon regulates the stability of REV-ERBα to modulate hepatic in a model of lung cancer-associated cachexia,” published today in Science Advances, illustrates how the is regulated under conditions of stress such as during lung cancer progression and cancer-associated tissue wasting disease called cachexia.

“Our research shows that a critical circadian protein, REV-ERBα, controls glucose production in the liver. During lung cancer progression and specifically under conditions of cachexia, this circadian regulation is lost, resulting in increased glucose production from the liver,” said senior author Selma Masri, Ph.D., assistant professor in the Department of Biological Chemistry at UCI School of Medicine. “Based on our findings, we identified that lung tumors are able to provide instructive cues to the liver to increase glucose production, a major for cancer cells.”