Toggle light / dark theme

Brain structure changes in people who work long hours

If you need an excuse to turn off the laptop over the weekend or rein in overtime, scientists have found that working extended hours actually changes parts of the brain linked to emotional regulation, working memory and solving problems. While we know the toll that “overwork” takes physically and mentally, the precise neurological impact has not been well understood.

An international team of researchers including scientists from Korea’s Chung-Ang University assessed 110 healthcare workers – 32 who worked excessive hours (52 or more per week) and 78 who clocked less than 52 hours per week, or what would be considered closer to standard hours in the field. Voxel based morphometry (VBM) to assess gray matter and atlas-based analysis was then applied to MRI scans of each individual’s brain, identifying volume and connectivity differences.

When the scientists adjusted the results to account for age and sex, they found that, in the overworked cohort, the imaging showed a significant difference in brain volume in 17 different regions of the organ – including the middle frontal gyrus (MFG), insula and superior temporal gyrus (STG). Atlas-based analysis identified that, in the overworked individuals, there was 19% more volume in the left caudal MFG. The MFG – part of the brain’s frontal lobe – is the heavy lifter when it comes to executive functioning like emotional regulation, working memory, attention and planning, while the STG’s main task is auditory and language processing. The insula, meanwhile, is key in pain processing and other sensory signaling.

Better than stitches: Researchers develop biocompatible patch for soft organ injuries

University of California, Los Angeles and University of California, San Diego researchers developed an injectable sealant for rapid hemostasis and tissue adhesion in soft, elastic organs.

Formulated with methacryloyl-modified human recombinant tropoelastin (MeTro) and Laponite silicate nanoplatelets (SNs), the engineered hydrogel demonstrated substantial improvements in tissue adhesion strength and hemostatic efficacy in preclinical models involving lung and arterial injuries.

Injuries to such as lungs, heart, and complicate surgical closure due to their constant motion and elasticity. Sutures, wires, and staples are mechanically fixed, risking when applied to tissues that expand and contract with each breath or heartbeat. Existing hemostatic agents, including fibrin-based sealants, aim to stem blood flow but may trigger intense coagulation responses in patients with clotting disorders.

Psychological treatment linked to physical brain changes that ease chronic pain

Back pain, migraines, arthritis, long-term concussion symptoms, complications following cancer treatment—these are just a few of the conditions linked to chronic pain, which affects 1 in 5 adults and for which medication is not always the answer.

Now, a new review study offers insight into how specific types of psychological treatment can help relieve this pain through in the brain.

The was published today in The Lancet. The study was led by Professor Lene Vase from the Department of Psychology at Aarhus BSS, Aarhus University.

GPS for proteins: Tracking the motions of cell receptors

Taste, pain, or response to stress—nearly all essential functions in the human body are regulated by molecular switches called G protein-coupled receptors (GPCRs). Researchers at the University of Basel have uncovered the fundamental mechanism for how such a GPCR works.

Using a method similar to the Earth satellite GPS, they could track the motions of a GPCR and observe it in action. Their findings, recently published in Science, provide guidance for designing drugs.

GPCRs are embedded in the and transmit signals from the outside to the inside of the cell. Because of their vast diversity and crucial role in the body, GPCRs are targeted by many drugs, such as painkillers, heart medications, and even the semaglutide injection for diabetes and obesity. In fact, about one-third of all approved drugs target GPCRs.

From landslides to pharmaceuticals: High-precision model simulates complex granular and fluid interactions

A research team from the School of Engineering at the Hong Kong University of Science and Technology has developed a new computational model to study the movement of granular materials such as soils, sands and powders. By integrating the dynamic interactions among particles, air and water phases, this state-of-the-art system can accurately predict landslides, improve irrigation and oil extraction systems, and enhance food and drug production processes.

The flow of granular materials—such as soil, sand and powders used in pharmaceuticals and food production—is the underlying mechanism governing many natural settings and industrial operations. Understanding how these particles interact with surrounding fluids like water and air is crucial for predicting behaviors such as soil collapse or fluid leakage.

However, existing models face challenges in accurately capturing these interactions, especially in partially saturated conditions where forces like and viscosity come into play.

Challenges of small cell lung cancer heterogeneity and phenotypic plasticity

In this Review, Simpson et al. summarize the emergent understanding of molecular subtypes of small cell lung cancer (SCLC). They discuss how intratumour heterogeneity and dynamic tumour plasticity may challenge the success of immune and molecular subtype-targeted therapies and argue that combination therapies, monitored by serial liquid biopsy-based biomarkers, will be needed to improve the outcomes of patients with SCLC.

New Support for Old Medications in Resistant Hypertension

The term resistant hypertension has been variably applied to patients with high blood pressure (BP) since at least the 1960s.1 Specific definitions have evolved over time to align with advances in treatment and BP goals. In 2018, the American Heart Association updated its definition of resistant…

/* */