БЛОГ

Archive for the ‘biotech/medical’ category: Page 1790

Aug 22, 2019

NAD+ Restoration Therapy

Posted by in categories: biotech/medical, life extension

Super proud to announce the first in-depth analysis by our “Rejuvenation Now” initiative: a “Risk-Benefit Analysis of.


An in-depth analysis — more than 200 pre-clinical and clinical trials.

Aug 22, 2019

Why ‘blobology’ is the new hot topic in science

Posted by in categories: biotech/medical, science

Scientists have created an image which zooms in to a tiny section inside a cell. This is not a simulation, it is the real thing. As you run the video, you will see the section highlighted in green and then thin yellow tubes inside it. These are strands of the body’s clotting agent ready to be transported to the site of a wound.

Aug 22, 2019

Self-assembled membrane with water-continuous transport pathways for precise nanofiltration

Posted by in categories: biotech/medical, chemistry, engineering, food, nanotechnology, sustainability

Self-assembled materials are attractive for next-generation materials, but their potential to assemble at the nanoscale and form nanostructures (cylinders, lamellae etc.) remains challenging. In a recent report, Xundu Feng and colleagues at the interdisciplinary departments of chemical and environmental engineering, biomolecular engineering, chemistry and the center for advanced low-dimension materials in the U.S., France, Japan and China, proposed and demonstrated a new approach to prevent the existing challenges. In the study, they explored size-selective transport in the water-continuous medium of a nanostructured polymer template formed using a self-assembled lyotropic H1 (hexagonal cylindrical shaped) mesophase (a state of matter between liquid and solid). They optimized the mesophase composition to facilitate high-fidelity retention of the H1 structure on photoinduced crosslinking.

The resulting nanostructured polymer material was mechanically robust with internally and externally crosslinked nanofibrils surrounded by a continuous aqueous medium. The research team fabricated a with size selectivity at the 1 to 2 nm length scale and water permeabilities of ~10 liters m−2 hour−1 bar−1 μm. The membranes displayed excellent anti-microbial properties for practical use. The results are now published on Science Advances and represent a breakthrough for the potential use of self-assembled membrane-based nanofiltration in practical applications of water purification.

Membrane separation for filtration is widely used in diverse technical applications, including seawater desalination, gas separation, food processing, fuel cells and the emerging fields of sustainable power generation and distillation. During nanofiltration, dissolved or suspended solutes ranging from 1 to 10 nm in size can be removed. New nanofiltration membranes are of particular interest for low-cost treatment of wastewaters to remove organic contaminants including pesticides and metabolites of pharmaceutical drugs. State-of-the-art membranes presently suffer from a trade-off between permeability and selectivity where increased permeability can result in decreased selectivity and vice-versa. Since the trade-off originated from the intrinsic structural limits of conventional membranes, materials scientists have incorporated self-assembled materials as an attractive solution to realize highly selective separation without compromising permeability.

Aug 21, 2019

New MRI technique captures image of a brain thinking

Posted by in categories: bioengineering, biotech/medical, neuroscience

An international team of researchers with partial support from the National Institute of Biomedical Imaging and Bioengineering (NIBIB) developed a new MRI technique that can capture an image of a brain thinking by measuring changes in tissue stiffness. The results show that brain function can be tracked on a time scale of 100 milliseconds – 60 times faster than previous methods. The technique could shed new light on altered neuronal activity in brain diseases.

The human brain responds almost immediately to stimuli, but non-invasive imaging techniques haven’t been able to keep pace with the brain. Currently, several non-invasive brain imaging methods measure brain function, but they all have limitations. Most commonly, clinicians and researchers use functional magnetic resonance imaging (fMRI) to measure brain activity via fluctuations in blood oxygen levels. However, a lot of vital brain activity information is lost using fMRI because blood oxygen levels take about six seconds to respond to a stimulus.

Since the mid-1990s, researchers have been able to generate maps of tissue stiffness using an MRI scanner, with a non-invasive technique called magnetic resonance elastography (MRE). Tissue stiffness can’t be measured directly, so instead researchers use MRE to measure the speed at which mechanical vibrations travel through tissue. Vibrations move faster through stiffer tissues, while vibrations travel through softer tissue more slowly; therefore, tissue stiffness can be determined. MRE is most commonly used to detect the hardening of liver tissue but has more recently been applied to other tissues like the brain.

Aug 21, 2019

Rapid tissue regeneration induced by intracellular ATP delivery—A preliminary mechanistic study

Posted by in categories: biotech/medical, chemistry

Circa 2017


We have reported a new phenomenon in acute wound healing following the use of intracellular ATP delivery—extremely rapid tissue regeneration, which starts less than 24 h after surgery, and is accompanied by massive macrophage trafficking, in situ proliferation, and direct collagen production. This unusual process bypasses the formation of the traditional provisional extracellular matrix and significantly shortens the wound healing process. Although macrophages/monocytes are known to play a critical role in the initiation and progression of wound healing, their in situ proliferation and direct collagen production in wound healing have never been reported previously. We have explored these two very specific pathways during wound healing, while excluding confounding factors in the in vivo environment by analyzing wound samples and performing in vitro studies. The use of immunohistochemical studies enabled the detection of in situ macrophage proliferation in ATP-vesicle treated wounds. Primary human macrophages and Raw 264.7 cells were used for an in vitro study involving treatment with ATP vesicles, free Mg-ATP alone, lipid vesicles alone, Regranex, or culture medium. Collagen type 1α 1, MCP-1, IL-6, and IL-10 levels were determined by ELISA of the culture supernatant. The intracellular collagen type 1α1 localization was determined with immunocytochemistry. ATP-vesicle treated wounds showed high immunoreactivity towards BrdU and PCNA antigens, indicating in situ proliferation. Most of the cultured macrophages treated with ATP-vesicles maintained their classic phenotype and expressed high levels of collagen type 1α1 for a longer duration than was observed with cells treated with Regranex. These studies provide the first clear evidence of in situ macrophage proliferation and direct collagen production during wound healing. These findings provide part of the explanation for the extremely rapid tissue regeneration, and this treatment may hold promise for acute and chronic wound care.

Wound healing is a complex and dynamic process involving the replacement of devitalized and missing structures. The traditional view of wound healing is that it involves hemostasis, inflammation, proliferation, and remodeling, and these steps result in a lag of 3–6 d before reepithelialization starts [1,2]. We have discovered that the intracellular delivery of adenosine triphosphate using ATP-vesicles as an acute wound treatment enhances wound healing [3,4]. The most unprecedented finding was that new tissue started to generate within 24 h, and it continued to grow to eliminate the wound cavity quickly [4–6]. This growth was attained by early and massive monocyte/macrophage trafficking, proliferation, and fast collagen production for direct formation of extracellular matrix (ECM).

Aug 21, 2019

Blood test to predict how likely you are to die within 5 to 10 years

Posted by in category: biotech/medical

A provocative new study is suggesting a blood test tracking 14 different biomarkers can predict a person’s risk of dying within the next 10 years better than any conventional models. The research is still a long way off being broadly deployed in clinical environments and the test may be of most use in human drug trials as a surrogate endpoint for mortality.

Aug 21, 2019

Nothing found for Boosting Nad Improves Age%25E2%2580%2590Related Hearing Impairment In Mice

Posted by in categories: biotech/medical, life extension

Today, we want to spotlight a recent study showing that boosting nicotinamide adenine dinucleotide (NAD+) levels in mice prevents age-related hearing loss.

What is β-Lapachone?

β-Lapachone is a quinone-containing compound that was originally isolated from the lapacho tree in South America. It is worth noting that this tree has been used as a herbal medicine for a number of South and Central American indigenous peoples and that the bark of the tree is sometimes used for making a herbal tea called taheebo.

Aug 21, 2019

Why a Promising, Potent Cancer Therapy Isn’t Used in the US

Posted by in category: biotech/medical

At first, the rough patch on the roof of Mike’s mouth didn’t seem like anything to worry about. It didn’t hurt. But it didn’t go away. His dentist referred him to an ear, nose, and throat doctor, who did a biopsy, which was inconclusive.

Aug 21, 2019

DNA Analysis Just Made The Eerie Mystery of Himalayan ‘Skeleton Lake’ Even Stranger

Posted by in category: biotech/medical

High in the Himalayas of India, amid the snow-capped peaks, nestles a mystery. Roopkund Lake is a shallow body of water filled with human bones — the skeletons of hundreds of individuals. It’s these that give the lake its other name, Skeleton Lake, and no one knows how the remains came to be there.

One hypothesis is that some catastrophe, a single event such as a powerful storm, had befallen a large group of people. But DNA analysis of 38 of the skeletons has turned that idea on its head.

The remains appear to come from distinct groups of people from as far as the Mediterranean, and they arrived at the lake several times over a 1,000-year span.

Aug 21, 2019

Suicide attempts are hard to anticipate. A study that tracks teens’ cellphone use aims to change that

Posted by in category: biotech/medical

Researchers hope mobile devices can capture signs of imminent risk that a doctor’s questionnaire can’t.