Toggle light / dark theme

The hidden physics of knot formation in fluids

Knots are everywhere—from tangled headphones to DNA strands packed inside viruses—but how an isolated filament can knot itself without collisions or external agitation has remained a longstanding puzzle in soft-matter physics.

Now, a team of researchers at Rice University, Georgetown University and the University of Trento in Italy has uncovered a surprising physical mechanism that explains how a single filament, even one too short or too stiff to easily wrap around itself, can form a knot while sinking through a fluid under strong gravitational forces.

The discovery, published in Physical Review Letters, provides new insight into the physics of polymer dynamics, with implications ranging from understanding how DNA behaves under confinement to designing next-generation soft materials and nanostructures.

Near-infrared light enables wireless power and data transfer for medical implants

A new study from a research team at the Center for Wireless Communications Network and Systems (CWC-NS) at the University of Oulu has introduced an approach using near-infrared (NIR) light beyond light therapy to facilitate simultaneous wireless power transfer and communication to electronic implantable medical devices (IMDs). Previously, the research team demonstrated that NIR light for wireless communication is feasible, and now the team made progress by involving wireless charging capabilities using the same light.

Featured in Optics Continuum, the research outlines an approach that promises to enhance the performance and durability of IMDs while providing more secure, safer, more private, and radio interference-free communication. The published paper, authored by Syifaul Fuada, Mariella Särestöniemi, and Marcos Katz at the CWC-NS, has demonstrated research merit as it was designated an Editor’s Pick, highlighting articles of excellent scientific quality and representing the work occurring in a specific field.

The paper is a small part of Syifaul Fuada’s doctoral research. “This is the initial step that could open other ideas to advance the proposed approach,” Fuada says.

Advanced optical model clarifies how complex materials interact with polarized light

Scientists at the University of Oxford demonstrate an approach to interpreting how materials interact with polarized light, which could help advance biomedical imaging and material design.

Their work, reported in Advanced Photonics Nexus, focuses on improving how researchers analyze a key optical property known as the retarder.

In optics, a retarder is a material or device that changes the way light waves are oriented as they pass through. Light waves have an orientation called polarization, and a retarder shifts the phase between different components of that light—essentially delaying one part of the wave compared to another.

Psychiatric Disorders Share Far More DNA Than Scientists Realized

A global research team co-led by VCU expert Kenneth Kendler has produced the most comprehensive genetic map so far, identifying five families of disorders that show a high degree of overlap. An international team of scientists is offering new insight into why people are so often affected by more

A grad student’s wild idea triggers a major aging breakthrough

Senescent “zombie” cells are linked to aging and multiple diseases, but spotting them in living tissue has been notoriously difficult. Researchers at Mayo Clinic have now taken an inventive leap by using aptamers—tiny, shape-shifting DNA molecules—to selectively tag these elusive cells. The project began as an offbeat conversation between two graduate students and quickly evolved into a collaborative, cross-lab effort that uncovered aptamers capable of binding to unique surface proteins on senescent cells.

Abstract: Helping cancer lose its grip

Here, Pengda Liu & team show SPOP inhibitors act as molecular glue degraders, stabilizing and activating STING to enhance immunotherapy in melanoma mouse models:

The figure shows the SPOP inhibitor 6lc reduces CBX4 and BMI1 foci, while ectopic CBX4 restores BMI1 foci and H2AX interactions.


4Department of Pharmacology.

5Division of Oncology, Department of Medicine, and.

6UNC Metabolomics and Proteomics Core, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Role of brain’s immune system in social withdrawal during sickness

“I just can’t make it tonight. You have fun without me.” Across much of the animal kingdom, when infection strikes, social contact shuts down. A new study details how the immune and central nervous systems implement this sickness behavior.

It makes perfect sense that when we’re battling an infection, we lose our desire to be around others. That protects them from getting sick and lets us get much needed rest. What hasn’t been as clear is how this behavior change happens.

In the research published in Cell, scientists used multiple methods to demonstrate causally that when the immune system cytokine interleukin-1 beta (IL-1β) reaches the IL-1 receptor 1 (IL-1R1) on neurons in a brain region called the dorsal raphe nucleus, that activates connections with the intermediate lateral septum to shut down social behavior.

“Our findings show that social isolation following immune challenge is self-imposed and driven by an active neural process, rather than a secondary consequence of physiological symptoms of sickness, such as lethargy,” said study co-senior author.

‘Zombie’ cells spark inflammation in severe fatty liver disease, researchers find

Mayo Clinic researchers have uncovered how aging “zombie cells” trigger harmful inflammation that accelerates a severe and increasingly common form of fatty liver disease called metabolic dysfunction-associated steatohepatitis (MASH). As obesity rates rise worldwide, MASH is projected to increase and is already one of the leading causes of liver transplantation.

“Liver scarring and inflammation are hallmarks of MASH. If left untreated, it can progress to liver cancer. This is why it’s so important to understand the mechanisms driving the disease so that we can prevent it or develop more effective treatments,” says Stella Victorelli, Ph.D., who is the lead author of the study published in Nature Communications.

Dr. Victorelli and colleagues, who study aged or senescent “zombie” cells, identified a mechanism by which these cells drive liver scarring and inflammation. They found that small molecules called mitochondrial RNA, typically found within the cell’s energy-producing mitochondria, can leak into the main part of the cell, where they mistakenly activate antiviral sensors called RIG-I and MDA5—normally triggered when a virus infects a cell. In this case, the danger signal comes from the cell’s own mitochondria, prompting a wave of inflammation that can damage nearby healthy tissue.

Fertility gene helps glioblastoma tumors survive chemotherapy and return after treatment, researchers discover

Research by University of Sydney scientists has uncovered a mechanism that may explain why glioblastoma returns after treatment, offering new clues for future therapies which they will now investigate as part of an Australian industry collaboration.

Glioblastoma is one of the deadliest brain cancers, with a median survival rate of just 15 months. Despite surgery and chemotherapy, more than 1,250 clinical trials over the past 20 years have struggled to improve survival rates.

Published in Nature Communications, the study shows that a small population of drug-tolerant cells known as “persister cells” rewires its metabolism to survive chemotherapy, using an unexpected ally as an invisibility cloak: a fertility gene called PRDM9.

/* */