Toggle light / dark theme

CRISPR heals genetic liver disorder in mice

Researchers healed mice with a genetic metabolic disorder that also affects humans by using a new editing tool to target and correct genetic mutations.

Some babies are born with the metabolic disorder phenylketonuria and need a special diet so that the amino acid phenylalanine doesn’t accumulate in the body. Excess phenylalanine delays mental and motor development. If left untreated, the children may develop mental disabilities.

The cause of this metabolic disorder is a mutation in a gene that provides the blueprint for the enzyme phenylalanine hydroxylase (Pah). The enzyme, which is produced by the cells of the liver, metabolizes phenylalanine.

Scientists grow functioning human neural networks in 3D from stem cells

A team of Tufts University-led researchers has developed three-dimensional (3D) human tissue culture models for the central nervous system that mimic structural and functional features of the brain and demonstrate neural activity sustained over a period of many months. With the ability to populate a 3D matrix of silk protein and collagen with cells from patients with Alzheimer’s disease, Parkinson’s disease, and other conditions, the tissue models allow for the exploration of cell interactions, disease progression and response to treatment. The development and characterization of the models are reported today in ACS Biomaterials Science & Engineering, a journal of the American Chemical Society.

The new 3D brain tissue models overcome a key challenge of previous models –the availability of human source neurons. This is due to the fact that neurological tissues are rarely removed from healthy patients and are usually only available post-mortem from diseased patients. The 3D tissue models are instead populated with human induced (iPSCs) that can be derived from many sources, including patient skin. The iPSCs are generated by turning back the clock on cell development to their embryonic-like precursors. They can then be dialed forward again to any cell type, including neurons.

The 3D brain tissue models were the result of a collaborative effort between engineering and the medical sciences and included researchers from Tufts University School of Engineering, Tufts University School of Medicine, the Sackler School of Graduate Biomedical Sciences at Tufts, and the Jackson Laboratory.

The Biotech Innovation That Will Transform Society Has Arrived (Hint: It’s Not CRISPR)

Michael Schein: How did you end up working at the forefront of biology and technology?

Andrew Hessel: I have the strangest career ever. I originally got into the life sciences simply because all the other areas of technology just weren’t that interesting to me. Most technology falls apart and ends up in the junkyard. Cars rust. Even buildings can burn down. But biotech is different because even though organisms die, DNA gets passes on. Unfortunately, as I quickly learned, most scientists make really crappy money. So I thought: Let me find a way to pursue what I’m interested in but in a way that lets me make a good living. With that in mind, I’ve detoured into a medley of different technology companies. Eventually I made my way to work that’s at the intersection of biological research and computers. That’s how I ended up doing what I do now.

Schein: Tell us about the specific kind of biotech that takes up most of your headspace these days.

Dr. James Peyer – A Portfolio Approach To Longevity

Earlier this year, we hosted the Ending Age-Related Diseases 2018 conference at the Cooper Union in New York City. This conference was designed to bring together the best in the aging research and biotech investment worlds and saw a range of industry experts sharing their insights.

Dr. James Peyer is the founder and Managing Partner of Apollo Ventures, an early-stage life science investor and company builder that focuses on breakthrough technologies for treating age-related diseases.

He discusses the strategic paths to bringing longevity-promoting therapeutics to market as quickly as possible, with a particular focus on engaging pharmaceutical companies via disease-focused, proof-of-concept trials.

Startups in the Aging Sector — Ending Age-Related Diseases 2018

Earlier this year, we hosted the Ending Age-Related Diseases 2018 conference at the Cooper Union in New York City. This conference was designed to bring together the best in the aging research and biotech investment worlds and saw a range of industry experts sharing their insights.

Dr. Oliver Medvedik, LEAF vice president and Director of the Maurice Kanbar Center for Biomedical Engineering at the Cooper Union, chaired a panel with a focus on starting up biotech companies and dealing with the challenges inherent to launching a company in this industry.

Undoing Aging 2019 is on the horizon

It will be our second conference totally focussed on the science of actual human rejuvenation therapies to repair the damage of aging.


We are happy to begin introducing the speakers, starting with Dr. Jerry Shay.

Dr. Shay is the Vice Chairman of the Department of Cell Biology at The University of Texas Southwestern Medical Center in Dallas. Dr. Shay´s work on the relationships of telomeres and telomerase to aging and cancer is well recognized.

“Jerry has been a stalwart supporter of the SENS concept for well over a decade, and a world leader in the telomere biology field for much longer than that. He spoke at the very first SENS conference, back in 2003, and it will be a joy to welcome him again.” says Aubrey de Grey.

/* */