Toggle light / dark theme

Imaging of Skull Base Tumors

The skull base provides a platform for supporting the brain while serving as a conduit for major neurovascular structures. In addition to malignant lesions originating in the skull base, there are many benign entities and developmental variants that may simulate disease. Therefore, a basic understanding of the relevant embryology is essential. Lesions centered in the skull base can extend to the adjacent intracranial and extracranial compartments; conversely, the skull base can be secondarily involved by primary extracranial and intracranial disease. CT and MRI are the mainstay imaging methods and are complementary in the evaluation of skull base lesions. Advances in cross-sectional imaging have been crucial in the management of patients with skull base pathology, as this represents a complex anatomical area that is hidden from direct clinical exam.

How Taiwan’s Giant Genomics Project Is Rewriting the Future of Disease Prediction

A sweeping genomic effort in Taiwan has revealed something that global precision medicine has long overlooked, that the best way to predict disease is to study the people who will be living with its consequences. Researchers at Academia Sinica have now shown that building genetic risk tools tailored to Han Chinese populations can transform how common illnesses are forecast and understood.

In work published in Nature on October 15, 2025, scientists analyzed genomic and clinical data from more than half a million participants in the Taiwan Precision Medicine Initiative. By conducting the largest genome wide association analysis of Han Chinese individuals to date, they developed the first population specific polygenic risk score models for diseases ranging from type 2 diabetes to autoimmune disorders to heart disease, achieving markedly stronger accuracy than tools based on European data. “This project marks a milestone for precision medicine in East Asia,” said Dr. Cathy S. J. Fann, senior corresponding author at Academia Sinica. “By integrating large scale genomic and clinical data, we are building predictive models that truly reflect the real genetic architecture of our population.”

Simple molecule shows remarkable Alzheimer’s reversal in rats

Scientists have developed a new molecule that breaks down beta-amyloid plaques by binding to excess copper in the brain. The treatment restored memory and reduced inflammation in rats, while also proving non-toxic and able to cross the blood–brain barrier. Because it’s far simpler and potentially cheaper than existing drugs, researchers are now pursuing partnerships to begin human trials.

A new space radiation shield: Flexible boron nitride nanotube film shows promise

High-energy cosmic radiation damages cells and DNA, causing cancer, and secondary neutrons—generated especially from the planetary surfaces—can be up to 20 times more harmful than other radiations. Aluminum, the most widely used shielding material, has the drawback of generating additional secondary neutrons when below a certain thickness.

Consequently, (BNNTs), which are lightweight, strong, and possess excellent neutron shielding capabilities, are emerging as a promising alternative.

BNNTs are ultrafine tubular only about 5 nanometers in diameter—roughly 1/20,000 the thickness of a human hair—making them extremely light and strong, with excellent thermal neutron absorption capability. However, due to limitations in fabrication technology, they have so far only been produced into thin and brittle sheet, restricting their practical applications.

MIT Invents Injectable Brain Chips

Not exactly a brain chip per se by a bit of nanotech.


While companies like Elon Musk’s Neuralink are hard at work on brain-computer interfaces that require surgery to cut open the skull and insert a complex array of wires into a person’s head, a team of researchers at MIT have been researching a wireless electronic brain implant that they say could provide a non-invasive alternative that makes the technology far easier to access.

They describe the system, called Circulatronics, as more of a treatment platform than a one-off brain chip. Working with researchers from Wellesley College and Harvard University, the MIT team recently released a paper on the new technology, which they describe as an autonomous bioelectronic implant.

As New Atlas points out, the Circulatronics platform starts with an injectable swarm of sub-cellular sized wireless electronic devices, or “SWEDs,” which can travel into inflamed regions of the patient’s brain after being injected into the bloodstream. They do so by fusing with living immune cells, called monocytes, forming a sort of cellular cyborg.

Epstein-Barr Virus Alters B Cells, Possibly Driving Lupus

Epstein-Barr virus (EBV) infected and reprogrammed autoreactive B cells in patients with systemic lupus erythematosus (SLE) to become activated antigen-presenting cells. EBV-infected B cells in patients with SLE showed increased antigen-presenting capabilities, unlike those in healthy control individuals, and may serve as drivers of systemic autoimmune responses.


Epstein-Barr virus reprograms autoreactive B cells, possibly contributing to systemic lupus erythematosus, with infected B cells in patients showing high antigen-presenting capabilities.

New roles found for STIP1 and Maspin proteins in cell renewal and structure

Two recently published studies led by Brazilian scientists reveal the key roles of multifunctional proteins, STIP1 and Maspin, in vital cellular processes.

The results demonstrate new functions that help clarify how cells maintain their shape, communicate, and renew themselves. These findings contribute to new studies on cancer, embryogenesis, and potential applications in .

According to one of the studies, STIP1 plays a central role in and maintaining pluripotency, or the ability of cells to multiply and give rise to other .

Children With Autism, ADHD, And Anorexia Share a Common Microbe Imbalance

The ratio of two dominant groups of microbes in the human gut was higher across all three disorder groups than was typically seen in the control group.


A new, small study suggests children with autism, ADHD, and anorexia share similarly disrupted gut microbiomes, which, by some measures, have more in common with each other than with their healthy, neurotypical peers.

Led by researchers from Comenius University in Slovakia, the study used stool samples to assess the gut microbiomes of 117 children.

The exploratory study included 30 boys with autism spectrum disorder (ASD), 21 girls with anorexia nervosa, and 14 children with attention deficit hyperactivity disorder (ADHD). The remaining samples were from age-and sex-matched healthy and neurotypical children, providing a control group.

The Role of Tregs in the Tumor Microenvironment

The tumor microenvironment (TME) is a unique ecosystem that surrounds tumor tissues. The TME is composed of extracellular matrix, immune cells, blood vessels, stromal cells, and fibroblasts. These environments enhance cancer development, progression, and metastasis. Recent success in immune checkpoint blockade also supports the importance of the TME and immune cells residing in the tumor niche. Although the TME can be identified in almost all cancer types, the role of the TME may not be similar among different cancer types. Regulatory T cells (Tregs) play a pivotal role in immune homeostasis and are frequently found in the TME. Owing to their suppressive function, Tregs are often considered unfavorable factors that allow the immune escape of cancer cells.

Microrobots overcome navigational limitations with the help of ‘artificial spacetimes’

Microrobots—tiny robots less than a millimeter in size—are useful in a variety of applications that require tasks to be completed at scales far too small for other tools, such as targeted drug-delivery or micro-manufacturing. However, the researchers and engineers designing these robots have run into some limitations when it comes to navigation. A new study, published in Nature, details a novel solution to these limitations—and the results are promising.

The biggest problem when dealing with microrobots is the lack of space. Their tiny size limits the use of components needed for onboard computation, sensing and actuation, making traditional control methods hard to implement. As a result, microrobots can’t be as “smart” as their larger cousins.

Researchers have tried to cover this limitation already. In particular, two methods have been studied. One method of control uses external feedback from an auxiliary system, usually with something like optical tweezers or . This has yielded precise and adaptable control of small numbers of microrobots, beneficial for complex, multi-step tasks or those requiring high accuracy, but scaling the method for controlling large numbers of independent microrobots has been less successful.

/* */