OpenEye is focused on a scientific approach to AI in drug discovery with models that are accurate and interpretable thus enhancing human intelligence.

Researchers at VCU Massey Comprehensive Cancer Center have developed a new computational tool called Vesalius, which could help clinicians understand the complex relationships between cancer cells and their surrounding cells, leading to potential discoveries regarding the development of hard-to-treat cancers.
Findings from a new study, published in Nature Communications, could help guide the identification of predictive biomarkers for multiple cancers and better inform the effectiveness of different treatment options based on individuals’ specific type of disease.
Rajan Gogna, Ph.D., member of the Developmental Therapeutics research program at Massey and assistant professor in the VCU School of Medicine’s Department of Human and Molecular Genetics, and a team of collaborators were driven by the goal of interpreting extensive amounts of data in a meaningful way.
Living cells contain a world of complex parts, which are constantly in motion. Many functions of these parts are still not fully understood, but likely harbor answers to many of our questions about how diseases work and how we might reverse them. One such case has been brought to light.
Enzymes act as catalysts for various processes within cells, but in some cases, they become inactivated by mistakes or environmental factors. When this happens, the processes that the enzymes facilitate may be compromised and lead to disease, depending on what processes are affected.
According to a new study published in Nature, Catel–Manzke syndrome—a bone disorder causing shortened bones, heart defects, cleft palate and finger malformation—may be a result of an inactivated enzyme, called dTDP-D-glucose 4,6-dehydratase (TGDS).
A new study led by a Utah engineering professor shows that gait retraining can reduce pain and slow cartilage damage. Almost one in four adults over the age of 40 live with painful osteoarthritis, a condition that has become one of the leading causes of disability. The disease gradually wears awa
Neurons in the gut produce a molecule that plays a pivotal role in shaping the gut’s immune response during and after inflammation, according to a new study by Weill Cornell Medicine investigators. The findings suggest that targeting these neurons and the molecules they produce could open the door to new treatments for inflammatory bowel disease and other disorders driven by gut inflammation.
Hundreds of millions of neurons make up the enteric nervous system, the “second brain” of the body, where they orchestrate essential functions of the gut such as moving food through the intestines, nutrient absorption and blood flow. While this system is known for regulating these fundamental processes, its role in controlling intestinal inflammatory responses has remained far less clear.
In their study, reported August 15 in Nature Immunology, the investigators focused on group 2 innate lymphoid cells (ILC2s), immune cells that reside within the linings of the gut. Their previous work revealed that ILC2s are a major source of a tissue-healing growth factor called amphiregulin and have the capacity to receive neuronal signals that modulate their function and can impact disease progression and recovery.
Ten years from now, it will be clear that the primary ways we use generative AI circa 2025—rapidly crafting content based on simple instructions and open-ended interactions—were merely building blocks of a technology that will increasingly be built into far more impactful forms.
The real economic effect will come as different modes of generative AI are combined with traditional software logic to drive expensive activities like project management, medical diagnosis, and insurance claims processing in increasingly automated ways.
In my consulting work helping the world’s largest companies design and implement AI solutions, I’m finding that most organizations are still struggling to get substantial value from generative AI applications. As impressive and satisfying as they are, their inherent unpredictability makes it difficult to integrate into the kind of highly standardized business processes that drive the economy.
A look at the next big iteration of the transformative technology.