Toggle light / dark theme

Family and peer conflicts predict teenage mental health issues, study finds

Identifying the factors that contribute to psychopathology and increase the risk of experiencing specific mental health conditions is a long-standing goal for many psychology researchers. While past studies have highlighted the crucial role of some experiences, particularly challenging events unfolding during childhood and adolescence, in the development of mental health disorders, their influence is often difficult to quantify and differentiate from other factors that could contribute to psychopathology.

Recent technological advances, particularly the development of increasingly sophisticated and computational analysis tools, have opened new possibilities for the study of disorders and their underlying patterns. When used to analyze the large amounts of data collected by and professionals over the past decades, these methods could help to uncover correlations between specific variables and hidden trends that are associated with psychopathology.

Researchers at Washington University in St. Louis and Washington University School of Medicine recently set out to explore the possible contribution of different factors to poor mental health among teenagers using data mining techniques (i.e., computational approaches to uncover patterns in data). Their findings, published in Nature Mental Health, suggest that , particularly conflicts between , bullying or a loss of reputation among peers, are the strongest predictors of psychopathology in adolescents.

A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

Inspired by the human eye, our biomedical engineering lab at Georgia Tech has designed an adaptive lens made of soft, light-responsive, tissuelike materials. Our study is published in the journal Science Robotics.

Adjustable camera systems usually require a set of bulky, moving, solid lenses and a pupil in front of a camera chip to adjust focus and intensity. In contrast, human eyes perform these same functions using soft, flexible tissues in a highly compact form.

Our lens, called the photo-responsive hydrogel soft lens, or PHySL, replaces rigid components with soft polymers acting as artificial muscles. The polymers are composed of a hydrogel —a water-based polymer material. This hydrogel muscle changes the shape of a soft lens to alter the lens’s focal length, a mechanism analogous to the ciliary muscles in the human eye.

Chemists create publicly available tool that provides unrivaled look at RNA inside cells

The interior of a cell is packed with proteins and nucleic acids, such as RNA, all of which need to perform specific functions at the exact right time. If they don’t, serious diseases—ALS, Huntington’s or many cancers—can result. But what exactly is happening inside the crowded cell when it malfunctions, and how can these miscues be prevented?

Thanks to a pair of chemists at the University of Massachusetts Amherst, a new publicly available tool called iConRNA provides an unrivaled look at the mysterious world RNA, and could help solve the mystery of how devastating diseases develop.

The research is published in the journal Proceedings of the National Academy of Sciences.

New molecular strategy achieves complete synthesis of anti-MRSA natural product

Spiroaspertrione A is a complex polycyclic compound naturally produced by the fungus Aspergillus sp. TJ23. First isolated in 2017, it quickly drew scientific attention for its promising ability to combat drug-resistant bacteria and restore their sensitivity to existing antibiotics.

Scientists have now found a way to carry out the total synthesis of the molecule in 16 steps, starting from a chiral pool building block called (+)-enoxolone that costs less than one euro per gram. The synthesis technique is presented in Science.

Staphylococcus aureus (staph) is a type of bacteria that quietly lives on our skin and in our noses. It usually does no harm, but when it turns invasive, it triggers dangerous infections like sepsis, pneumonia, and many hospital-acquired infections. What makes it truly alarming is its growing resistance to antibiotics, which can turn treatable infections into deadly threats.

Geographical Expansion of Avian Metapneumovirus Subtype B: First Detection and Molecular Characterization of Avian Metapneumovirus Subtype B in US Poultry

Avian metapneumovirus (aMPV), classified within the Pneumoviridae family, wreaks havoc on poultry health. It typically causes upper respiratory tract and reproductive tract infections, mainly in turkeys, chickens, and ducks. Four subtypes of AMPV (A, B, C, D) and two unclassified subtypes have been identified, of which subtypes A and B are widely distributed across the world. In January 2024, an outbreak of severe respiratory disease occurred on turkey and chicken farms across different states in the US. Metagenomics sequencing of selected tissue and swab samples confirmed the presence of aMPV subtype B. Subsequently, all samples were screened using an aMPV subtype A and B multiplex real-time RT-PCR kit. Of the 221 farms, 124 (56%) were found to be positive for aMPV-B. All samples were negative for subtype A.

Psoriasis-linked gene mutation also impacts gut health, scientists discover

A mutation previously linked to skin disorders like psoriasis may also play a surprising role in gut health, according to new research published by scientists at VIB-UGent and colleagues from UGent, the University of Barcelona, and University College London. This mutation activates skin immune responses but also affects the intestine.

This finding, published in EMBO Molecular Medicine, reveals a new connection between genetics, the immune system, and the gut, which may have therapeutic implications.

Scientists under the leadership of Dr. Inna Afonina and Prof. Rudi Beyaert (VIB-UGent Center for Inflammation Research) have found that a mutation in the gene CARD14, known for activating skin immune responses in psoriasis patients, also affects the intestine. This mutation reduces gut motility, promotes mild inflammation, and increases vulnerability to bacterial infections.

Anti-CD19 CAR T-Cell Therapy in Advanced Stiff-Person Syndrome and Concomitant Myasthenia Gravis

The immune system works to identify and target invading pathogens. Specifically, our bodies work to get rid of any harmful infections by employing a two-part immune response. The first wave of immunity is the innate immune system. This initial reaction is broad and non-specific with innate cells circulating throughout the body to detect foreign pathogens. These cells that are involved include neutrophils, macrophages, eosinophils, basophils, and dendritic cells. Once cells detect an issue, they alert the rest of the body to completely filter out the infection. Importantly, the second wave of immunity, or the adaptive immune system, elicits a strong, specific response that target pathogens the innate immune system cannot neutralize.

Adaptive immunity builds to generate robust protection against aggressive diseases. The cells that make up this response include B and T cells. B cells are mainly responsible for generating antibodies to neutralize and signal infections throughout the body. T cells are the drivers that get rid of disease. T cell activity destroys infected cells and other pathogens lingering throughout the body or site of infection. The adaptive immune response is also critical for immune memory. Once someone experiences a disease and recovers, adaptive immune cells will remember that pathogen next time it enters the body — this is how vaccines work. A patient is injected with a non-harmful virus to expose the immune system. Immediately, the body will respond and destroy the virus. However, a few T cells will also be generated to targeted similar viruses in the future. As a result, when a patient is exposed to the infection again, they will be protected and not experience symptoms.

T cells are critical for any disease or infection, including cancer. Many immunotherapies currently being develop involve activating and directing T cells to the site of the tumor. However, immunotherapies have limited efficacy due to various mechanisms around the tumor that suppress immunity. Scientists are working to understand T cell biology to develop better immunotherapies and more accurately predict treatment outcomes in patients.

/* */