Toggle light / dark theme

From Mammoth Revival to Human Fertility with Dr. Eriona Hysolli | Singularity University

Join us for an exclusive 1-hour conversation with Dr. Eriona Hysolli, the visionary scientist bridging de-extinction technology and the future of human reproduction. Recognized by Time100 Next for her groundbreaking work reviving the woolly mammoth, Dr. Hysolli brings a unique perspective to reproductive biotechnology that you won’t find anywhere else.

In this informal Q&A session, we’ll explore how cutting-edge technologies originally developed for species conservation are now revolutionizing human fertility treatments. Dr. Hysolli will share insights on:
The latest breakthroughs in synthetic embryos and artificial wombs.
How in vitro gametogenesis could transform infertility treatment.
Lessons from mammoth de-extinction that apply to human reproductive health.
The intersection of genome engineering and fertility solutions.
Near-term commercial applications in reproductive biotechnology.

Drawing from her pioneering work at Yale, George Church’s lab at Harvard, and as Head of Biological Sciences at Colossal Biosciences, Dr. Hysolli offers a rare glimpse into technologies that could redefine human reproduction within the next decade.

The session will feature a moderated discussion followed by audience Q&A. Whether you’re an investor, entrepreneur, healthcare professional, or simply fascinated by the future of fertility, this conversation will provide essential insights into one of biotechnology’s most promising frontiers.

Subscribe: http://bit.ly/1Wq6gwm.

Connect with Singularity University:

Light-powered microscopic swimmers with on/off control open new pathways for drug delivery

Scientists have created tiny disk-shaped particles that can swim on their own when hit with light, akin to microscopic robots that move through a special liquid without any external motors or propellers.

Published in Advanced Functional Materials, the work shows how these artificial swimmers could one day be used to deliver cargo in a variety of fluidic situations, with potential applications in drug delivery, water pollutant clean-up, or the creation of new types of smart materials that change their properties on command.

“The essential new principles we discovered—how to make microscopic objects swim on command using simple materials that undergo when exposed to controllable energy sources—pave the way for applications that range from design of responsive fluids, controlled , and new classes of sensors, to name a few,” explained lead researcher Juan de Pablo.

Implantable bioelectronics and wearable sensors for kidney health and disease

Advances in biosensor technology have the potential to enable continuous, non-invasive monitoring of kidney health through wearable and implantable systems. Non-invasive microfluidic systems have demonstrated utility in the detection of kidney-relevant biomarkers in peripheral body fluids such as sweat, interstitial fluid, tears and saliva, whereas implantable systems permit the direct measurement of biophysical tissue properties including tissue oxygenation, perfusion and temperature.

Heavy Drinkers Face Higher Risk of Brain Lesions And Alzheimer’s Markers

Alcohol is notoriously bad for health, and a recent study might add “long-term effects on brain health” to the growing list of ways drinking can cause harm.

The research, led by scientists at the University of São Paulo in Brazil, investigated the impact of regular drinking by examining brain autopsy data from 1,781 individuals, correlating findings with their reported drinking habits.

After adjusting for sociodemographic and clinical variables, like smoking and physical activity, the team found that the heaviest drinkers had a 133 percent higher risk of developing vascular brain lesions compared to non-drinkers.

High-performance memory devices can dissolve in water to address e-waste problem

The use of electronics in various forms is on the rise, from wearable devices like smartwatches to implantable devices like body-implanted sensors, skin-worn smart patches, and disposable monitoring devices. These devices, which are inevitably discarded after use, contribute to the growing problem of electronic waste (e-waste), a significant environmental concern.

The Korea Institute of Science and Technology (KIST) has announced that a joint research team, led by Dr. Sangho Cho of the Center for Extreme Materials Research and Dr. Yongho Joo of the Center for Functional Composite Materials Research, has developed a that offers high-performance data storage while completely degrading within days when immersed in water. The research is published in the journal Angewandte Chemie International Edition.

The material is biocompatible and stable enough for implantation in the human body, and the onset of degradation can be controlled by adjusting the thickness and the composition of the protective layer. Once this protective layer dissolves, the material degrades naturally in water within approximately three days, without leaving any residue.

Creatine monohydrate pilot in Alzheimer’s: Feasibility, brain creatine, and cognition

Preclinical studies suggest that creatine monohydrate (CrM) improves cognition and Alzheimer’s disease (AD) biomarkers. However, there is currently no clinical evidence demonstrating the effects of CrM in patients with AD.

Diabetes drug may serve as alternative treatment option for hydrocephalus

A drug commonly used to treat type 2 diabetes may reduce excess fluid in the brains of patients with hydrocephalus, which could help treat the disease less invasively than current treatments, according to a Northwestern Medicine study published in the Journal of Clinical Investigation.

Stephen Magill, MD, Ph.D., assistant professor of Neurological Surgery, was senior author of the study.

Normal pressure occurs when excess cerebrospinal fluid builds up inside the skull and puts pressure on the brain. The cause of the condition is elusive and affects up to 3% of individuals over the age of 65, with symptoms including , difficulty walking and bladder problems.

Nanodomains hold the key to next-generation solar cells, researchers find

A new study, published in Nature Nanotechnology and featured on the journal’s front cover this month, has uncovered insights into the tiny structures that could take solar energy to the next level.

Researchers from the Department of Chemical Engineering and Biotechnology (CEB) have found that dynamic nanodomains within lead halide perovskites—materials at the forefront of solar cell innovation—hold a key to boosting their efficiency and stability. The findings reveal the nature of these microscopic structures, and how they impact the way electrons are energized by light and transported through the material, offering insights into more efficient solar cells.

The study was led by Milos Dubajic and Professor Sam Stranks from the Optoelectronic Materials and Device Spectroscopy Group at CEB, in collaboration with an international network, with key contributions from Imperial College London, UNSW Sydney, Colorado State University, ANSTO Sydney, and synchrotron facilities in Australia, the UK, and Germany.