Toggle light / dark theme

Monitoring electrical potentials with high recording site density and micrometer spatial resolution in liquid is critical in biosensing. Organic electronic materials have driven remarkable advances in the field because of their unique material properties, yet limitations in spatial resolution and recording density remain. Here, we introduce organic electro-scattering antennas (OCEANs) for wireless, light-based probing of electrical signals with micrometer spatial resolution, potentially from thousands of sites. The technology relies on the unique dependence of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate light scattering properties to its doping level. Electro-optic characteristics of individual antennas varying in diameters and operating voltages were systematically characterized in saline solution. Signal-to-noise ratios up to 48 were achieved in response to 100-mV stimuli, with 2.5-mV detection limits. OCEANs demonstrated millisecond time constants and exceptional long-term stability, enabling continuous recordings over 10 hours. By offering spatial resolution of 5 μm and a recording density of 4 × 106 cm−2, OCEANs unlock new readout capabilities, potentially accelerating fundamental and clinical research.


Sci. Adv. 10, eadr8380 (2024). DOI:10.1126/sciadv.adr8380

Select the format you want to export the citation of this publication.

Bioconvergence — Bridging Science And Nature To Shape Tomorrow — Dr. Nina Siragusa Ph.D. — Merck KGaA, Darmstadt, Germany


#NinaSiragusa #MerckGroup #Darmstadt.

Dr. Nina Siragusa, Ph.D., MBA, is the Strategy, Business, and Data & Digital Lead within the global R&D organization of Merck Healthcare KGaA, Darmstadt, Germany. In this role, she leads strategic projects, manages business operations, and drives digital transformation.

One used AI to dream up a universe of potential CRISPR gene editors. Inspired by large language models—like those that gave birth to ChatGPT—the AI model in the study eventually designed a gene editing system as accurate as existing CRISPR-based tools when tested on cells. Another AI designed circle-shaped proteins that reliably turned stem cells into different blood vessel cell types. Other AI-generated proteins directed protein “junk” into the lysosome, a waste treatment blob filled with acid inside cells that keeps them neat and tidy.

Outside of medicine, AI designed mineral-forming proteins that, if integrated into aquatic microbes, could potentially soak up excess carbon and transform it into limestone. While still early, the technology could tackle climate change with a carbon sink that lasts millions of years.

It seems imagination is the only limit to AI-based protein design. But there are still a few cases that AI can’t yet fully handle. Nature has a comprehensive list, but these stand out.

How we classify cancer and spot it in its earliest stages could need an urgent rethink: researchers have found that even some healthy women carry cells with the key hallmarks of breast cancer.

These cells are known as aneuploid cells, and have an abnormal number of chromosomes. They’re common in invasive breast cancer, and it’s thought the chromosome imbalance enables cancer to spread and evade the body’s immune defenses.

Now it appears aneuploid cells might also be present even when there’s no cancer in sight. The researchers, from the University of Texas and the Baylor College of Medicine in Texas, found them in breast tissue samples from 49 healthy women.

Whether cells in the human body survive or die under stress depends, among other things, on their mitochondria. Scientists at the Faculty of Medicine at the University of Freiburg have now shown that a sudden stop in energy production in mitochondria prevents normal cell death or so-called apoptosis and instead triggers an inflammatory response. The results of this research were published in the journal Immunity.

“We found that mitochondria provide a kind of decision-making aid: they regulate whether a cell undergoes clean, silent apoptosis or releases pro-inflammatory messenger substances,” explains Prof. Dr. Olaf Groß, head of the study, a scientist at the Institute of Neuropathology at the Medical Center—University of Freiburg and a member of the Cluster of Excellence CIBSS—Center for Integrative Biological Signaling Studies at the University of Freiburg.

“This finding helps us to better understand how the body maintains a balance between cell protection and defense mechanisms. This could open up new avenues for the treatment of inflammatory diseases.”

Researchers discovered that the mRNA modification m6A triggers rapid degradation, regulating protein production. This breakthrough could inform drug development to manage protein-related diseases.

Messenger ribonucleic acids (mRNA) are like the architects of our bodies. They carry precise blueprints for building proteins, which are read and assembled by their cellular partners, the ribosomes. Proteins are essential for our survival, as they regulate cell division, bolster the immune system, and make our cells resilient against external threats.

Just like in real-world construction, some cellular blueprints require extra instructions—such as when a protein needs to be produced rapidly or when corrections are needed for a flawed design. In our bodies, this role is fulfilled by RNA modifications. These small chemical changes function like detailed annotations, offering additional guidance to specific parts of the mRNA for optimal protein production.

A study published in Cell Reports Medicine reveals that bowel movement frequency significantly influences physiology and long-term health, with the best outcomes linked with passing stools once or twice a day.

Previous research has suggested associations between constipation and diarrhea with higher risks of infections and neurodegenerative conditions, respectively.

But since these findings were observed in sick patients, it remained unclear whether irregular bathroom visits were the cause or result of their conditions.

Researchers at the University of Cincinnati College of Medicine and Cincinnati Children’s Hospital have developed a new approach, which combines advanced screening techniques with computational modeling, to significantly shorten the drug discovery process. It has the potential to transform the pharmaceutical industry.

The research, published recently in Science Advances, represents a significant leap forward in drug discovery efficiency. It was featured on LegalReader.com.

https://www.uc.edu/news/articles/2024/09/uc-college-of-medic…aster.html


Legal Reader seeks to provide the latest legal news & commentary on the laws that shape our world.