Toggle light / dark theme

As brain organoids grow increasingly complex, leading scientists and bioethicists call for global oversight

In an effort to address these ethical grey areas, 17 leading scientists and bioethicists from five countries are urging the establishment of an international oversight body to monitor advances in the rapidly expanding field of human neural organoids and to provide ethical and policy guidance as the science continues to evolve. The call to action, published Thursday in Science, comes as U.S. government agencies are making new investments in organoid science aimed at accelerating drug discovery and reducing reliance on animal models of disease.

In September, the National Institutes of Health announced $87 million in initial contracts to establish a new center dedicated to standardizing organoid research. The move followed an earlier pledge by both the NIH and the Food and Drug Administration to reduce, and possibly replace, testing on mice, primates, and other animals with other methods — including organoids and organ-on-a-chip technologies — for developing certain medicines.

Government promotion of human stem cell models more broadly will only increase the recruitment of new researchers into the field of neural organoids, which has seen an explosion from a few dozen labs a decade ago to hundreds around the world now, said Sergiu Pasca, a pioneering neuroscientist and stem cell biologist at Stanford University who co-authored the Science commentary.

Why Alzheimer’s patients forget loved ones

Few moments are more heartbreaking for families of Alzheimer’s disease patients than when a loved one no longer recognizes them. New research from the University of Virginia School of Medicine published in Alzheimer’s & Dementia may reveal why that happens and offer hope for prevention.

UVA’s Harald Sontheimer, graduate student Lata Chaunsali and their colleagues found that when protective structures around break down, people may lose the ability to recognize loved ones. In lab studies, keeping these structures intact helped mice remember one another.

“Finding a structural change that explains a specific memory loss in Alzheimer’s is very exciting,” said Sontheimer, chair of UVA’s Department of Neuroscience and member of the UVA Brain Institute. “It is a completely new target, and we already have suitable drug candidates in hand.”

Scientists Create First-Ever Drug to Destroy Cancer’s “Immortality” RNA

A research team has unveiled a small molecule that hunts down a cancer-enabling RNA and quietly erases it. Researchers have designed a groundbreaking drug molecule capable of precisely eliminating TERRA, an RNA molecule that some cancer cells rely on to survive. Using a sophisticated method known

Goodbye, Cavities? Scientists Just Found a Way to Regrow Tooth Enamel

A newly developed material has been used to create a gel capable of repairing and rebuilding tooth enamel, offering a potential breakthrough in both preventive and restorative dental care.

Scientists from the University of Nottingham’s School of Pharmacy and Department of Chemical and Environmental Engineering designed this bioinspired substance to restore damaged or eroded enamel, reinforce existing enamel, and help guard against future decay. Their findings were published in Nature Communications.

This protein-based gel, which contains no fluoride, can be quickly applied to teeth using the same method dentists use for traditional fluoride treatments. It imitates the natural proteins responsible for guiding enamel formation early in life. Once in place, the gel forms a thin, durable coating that seeps into the tooth surface, filling small cracks and imperfections.

New brain atlas offers unprecedented detail in MRI scans

The human brain comprises hundreds of interconnected regions that drive our thoughts, emotions, and behaviours. Existing brain atlases can identify major structures in MRI scans – such as the hippocampus, which supports memory and learning – but their finer sub-regions remain hard to detect. These distinctions matter because sub-regions of areas like the hippocampus, for example, are affected differently during Alzheimer’s disease progression.

Examining the brain at the cellular level is achievable using microscopy (histology), but cannot be done in living individuals, limiting its potential for understanding how the human brain changes during development, ageing and disease.

Published in Nature, the new study introduces NextBrain, an atlas of the entire adult human brain that can be used to analyse MRI scans of living patients in a matter of minutes and at a level of detail not possible until now.

The creators of the atlas, which is freely available, hope it will ultimately help to accelerate discovery in brain science and its translation into better diagnosis and treatment of conditions such as Alzheimer’s.

&


Coordinating health AI to prevent defensive escalation

Artificial intelligence (AI) systems that can analyse medical images, records, and claims are becoming accessible to everyone. Although these systems outperform physicians at specific tasks, such as detecting cancer on CT scans, they are still imperfect. But as AI performance progresses from occasionally correct to reliably superior, there will be increasing pressure to conform to algorithmic outputs.

Is fungi our secret tool against antibiotic resistance?

face_with_colon_three fungi is even better than current medicines and frankly better for you. We can also ingest fungi that can help be a natural food medicine to help prevent worse diseases.


While all attention is on the pandemic right now, the SARS-CoV-2 virus isn’t the only microbial threat we face.

While we’re all rightly focused on the COVID-19 pandemic at the moment, the SARS-CoV-2 virus isn’t the only microbial threat we face.

Back in 2014, the World Health Organization (WHO) warned that within a decade, antibiotic-resistant bacteria could make routine surgery, organ transplantation and cancer treatment life-threateningly risky — and spell the end of modern medicine as we know it.

United Nations General Assembly’s AUDACITY 100 Disruptors Summit

face_with_colon_three Fungi can save all life on earth. This lecture teaches that mushrooms are outperforming even age old medicines.


Watch my 15 minute speech at the United Nations General Assembly’s AUDACITY 100 Disruptors Summit was a powerful reminder of how interconnected we all are.

I spoke about how fungal mycelium can help heal ecosystems, strengthen food systems, and strengthens the health.
of the residents of the planet. Mycelium supports our collective immunity.

When Mycelium Running: How Mushrooms Can Help Save the World was published in 2005, it foretold the mycelial revolution that continues to sweep the planet. This book is as relevant today as it was then. What has happened since? The scientific community continues to verify that mycelium is essential for our collective health, whether as nutritional supplements, or as the core fabric of our food webs.

Scientists map DNA folding at single base-pair resolution in living cells

Scientists from Oxford’s Radcliffe Department of Medicine have achieved the most detailed view yet of how DNA folds and functions inside living cells, revealing the physical structures that control when and how genes are switched on.

Using a new technique called MCC ultra, the team mapped the down to a single base pair, unlocking how genes are controlled, or, how the body decides which genes to turn on or off at the right time, in the right cells. This breakthrough gives scientists a powerful new way to understand how lead to disease and opens up fresh routes for drug discovery.

“For the first time, we can see how the genome’s control switches are physically arranged inside cells, said Professor James Davies, lead author of the study published in the journal Cell titled ” Mapping chromatin structure at base-pair resolution unveils a unified model of cis-regulatory element interactions.”

/* */