Toggle light / dark theme

Li, Y.; Hecht, S.S. Metabolic Activation and DNA Interactions of Carcinogenic N-Nitrosamines to Which Humans Are Commonly Exposed. Int. J. Mol. Sci. 2022, 23, 4559. https://doi.org/10.3390/ijms23094559

AMA Style

Li Y, Hecht SS. Metabolic Activation and DNA Interactions of Carcinogenic N-Nitrosamines to Which Humans Are Commonly Exposed. International Journal of Molecular Sciences. 2022; 23:4559. https://doi.org/10.3390/ijms23094559

Immunotherapy is a type of cancer treatment that stimulates a patient’s immune system to attack tumours.

While promising, its effectiveness varies among patients.

The new VUB technology helps identify in advance which patients are likely to benefit from this treatment.

The study introduces an innovative tracer targeting CD163, a molecular receptor on tumour-associated macrophages—immune cells that support tumour growth and protection.

DOI: Abstract We are living in a historical period in respect to the deterioration in public health, as we experience the rise of the catastrophic obesity epidemic and mental health crisis in recent decades, despite the great efforts from the scientific and medical community to seek health solutions and to try to find cures to the enormous human suffering and economic costs resulting by this collapse in public health. This trend has reached such a critical level that it jeopardizes society when over 40% of the population is obese in the United States, suffering grave medical health conditions, even as the expenditure on public health is rising exponentially to over 20% of gross domestic product. This should point to a monumental failure in our fundamental understanding of basic human biology and health. This article suggests that our current Western reductionist scientific paradigm in both biology and medicine has proved impotent and failed us completely. Therefore, the current cultural health crises require a more holistic approach to human biology and health in terms of chronobiological trends. The emerging neuroscience of brain energy metabolism will be considered as a holistic model for understanding how solar cycles affect our civilization and drive our sex and growth hormones and neurotransmitters that shape both our physical and mental health.

Children with hereditary deafness regained their hearing thanks to a type of gene therapy, a new study published on Wednesday found.

In a clinical trial, co-led by investigators from Mass Eye and Ear, a specialty hospital in Boston, six children who had a form of genetic deafness called DFNB9 were examined.

This deafness is caused by mutations of the OTOF gene. This mutation fails to produce a protein known as otoferlin, which is necessary for the transmission of sound signals from the ear to the brain, according to the researchers.

A recent study from Stanford’s Wu Tsai Neurosciences Institute has shed light on the interplay between two key brain chemicals, dopamine and serotonin, revealing their opposing roles in shaping our decisions and learning processes. Published in Nature, the research demonstrates for the first time that dopamine and serotonin operate as a “gas and brake” system, jointly influencing how we learn from rewards. The findings have broad implications, from understanding everyday decision-making to developing treatments for neurological and psychiatric conditions such as addiction, depression, and Parkinson’s disease.

Dopamine and serotonin are crucial to many aspects of human behavior, including reward processing and decision-making. Both neurotransmitters are also implicated in a variety of mental health disorders. While previous research has established their individual roles—dopamine is linked to reward prediction and seeking, while serotonin promotes long-term thinking and patience—the precise nature of their interaction has remained unclear.

Two competing theories have sought to explain their dynamic: the “synergy hypothesis,” which posits that dopamine focuses on immediate rewards and serotonin on long-term benefits, and the “opponency hypothesis,” suggesting the two act in opposition, with dopamine encouraging impulsive action and serotonin promoting restraint. The Stanford researchers aimed to directly test these theories using advanced experimental methods.

Penn Engineers have modified lipid nanoparticles (LNPs) — the revolutionary technology behind the COVID-19 mRNA vaccines — to not only cross the blood-brain barrier (BBB) but also to target specific types of cells, including neurons. This breakthrough marks a significant step toward potential next-generation treatments for neurological diseases like Alzheimer’s and Parkinson’s.

In a new paper in Nano Letters, the researchers demonstrate how peptides — short strings of amino acids — can serve as precise targeting molecules, enabling LNPs to deliver mRNA specifically to the endothelial cells that line the blood vessels of the brain, as well as neurons.

This represents an important advance in delivering mRNA to the cell types that would be key in treating neurodegenerative diseases; any such treatments will need to ensure that mRNA arrives at the correct location. Previous work by the same researchers proved that LNPs can cross the BBB and deliver mRNA to the brain, but did not attempt to control which cells the LNPs targeted.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Aging happens in distinct stages marked by synchronized cellular changes across organs, as shown in Rockefeller’s largest-ever mammalian aging atlas. Their findings offer clues for targeting aging processes and reveal key age and sex differences in cellular dynamics.

If you compared photos of a maple tree taken in July and December, the difference would be striking: a vibrant green canopy in summer versus bare, stark branches in winter. What those images wouldn’t reveal is how the transformation unfolded—whether it was gradual or sudden. In reality, deciduous trees usually wait for environmental cues, such as changes in light or temperature, before shedding all their leaves within a brief span of one to two weeks.

When it comes to aging, we may be more like these trees than we realized.