Category: biotech/medical – Page 572
2nd India CGT Symposium 2024
Bio-Rad invites you to our 2nd India Cell Gene Therapy Symposium 2024 After many decades of effort, the future of cell and gene therapies (CGT) is incredibly promising. A flurry of recent successes has led to the approval of several life changing treatments for patients and many more therapies are in development. CGT seek to correct the root cause of an illness at the molecular level. These game changing medicines are reshaping how we address previously uncurable illnesses — transforming people’s lives.
Mayo Clinic researchers develop new AI tools to reveal seizure hotspots, improve patient care
Mayo Clinic researchers have developed new artificial intelligence (AI)-based tools to pinpoint specific regions of the brain with seizure hotspots more quickly and accurately in patients with drug-resistant epilepsy. Their study, published in Nature Communications Medicine, highlights the potential of AI to revolutionize epilepsy treatment by interpreting brain waves during electrode implantation surgery. This transformative approach could significantly reduce the time patients spend in the hospital, accelerating the identification and removal of seizure-generating brain regions.
“This innovative approach could enable more rapid and accurate identification of seizure-generating areas during stereo-electroencephalography (EEG) implantation surgery, potentially reducing the cost and risks of prolonged monitoring,” says Nuri Ince, Ph.D., senior author of the study and a consultant in the Mayo Clinic Department of Neurologic Surgery.
Drug-resistant epilepsy often requires surgical removal of the seizure-causing brain tissue. A first step in that treatment is typically a surgery that involves implanting electrodes in the brain and monitoring neural activity for several days or weeks to identify the location of the seizures.
Future of Medicine
VIEW VIDEOS Thank you for joining us. All sessions were recorded and will be available on the Globe Events YouTube channel. Visit Globe.com/events for future events Thank you for joining our first annual Future of Medicine, streaming live from Boston on November 13.
Algorithms based on deep learning can improve medical image analysis
Artificial intelligence has the potential to improve the analysis of medical image data. For example, algorithms based on deep learning can determine the location and size of tumors. This is the result of AutoPET, an international competition in medical image analysis, where researchers of Karlsruhe Institute of Technology (KIT) were ranked fifth.
The seven best autoPET teams report in the journal Nature Machine Intelligence on how algorithms can detect tumor lesions in positron emission tomography (PET) and computed tomography (CT).
Imaging techniques play a key role in the diagnosis of cancer. Precisely determining the location, size, and type of tumor is essential for choosing the right therapy. The most important imaging techniques include positron emission tomography (PET) and computer tomography (CT).
Reclassification of Gene Variants Linked to Hereditary Colorectal Cancer
Colorectal cancer (CRC) remains one of the most clinically challenging malignancies facing our public health system. CRC accounts for the second and third most common cancer in males and females, respectively. In addition, CRC represents one of the most deadly cancers, expected to result in over 50,000 mortalities in 2024.
Hereditary colorectal cancer (HCRC) occurs when a parent passes a cancer gene to a child. Unfortunately, we have not identified a single gene that causes the disease. Hereditary CRC syndromes, such as hereditary non-polyposis colorectal cancer (HNPCC; also known as Lynch syndrome) and familial adenomatous polyposis (FAP), describe a group of genetic diseases that confer a high risk of developing CRC. As our knowledge has expanded, we have learned about a growing number of genetic variants in the genes that predispose carriers to CRC. However, the precise role of some variants in the development of CRC cancer remains unclear. Uncovering more information about these variants, called variants of uncertain significance.
As our knowledge has expanded, we have learned about a growing number of genetic variants in the genes which predispose carriers to CRC. However, the precise role of some variants in the development of CRC cancer remains unclear. Uncovering more information about these variants, called variants of uncertain significance (VUS), can aid in optimizing screening and surveillance programs.
Nanotechnology: A potential cure for incurable diseases
Nanotechnology is poised to transform neurological disorder treatments by overcoming the blood-brain barrier, enabling effective medication delivery for conditions like dementia and Alzheimer’s. This innovative approach also shows promise in dermatology and cancer treatment, enhancing drug absorption and targeting, while minimizing side effects. Experts at AIIMS highlighted ongoing research and potential breakthroughs expected in the next few years.
Asymmetric dearomative single-atom skeletal editing of indoles and pyrroles
Skeletal editing has emerged as an appealing strategy for scaffold-hopping-based drug discovery, but the enantioselective single-atom skeletal editing of N-heteroarenes is challenging. Now, using trifluoromethyl N-triftosylhydrazones as carbene precursors, the enantiodivergent dearomative skeletal editing of indoles and pyrroles has been achieved through asymmetric carbon-atom insertion.
Newly Discovered Microbe Turns Carbon Into Energy — and Sheds Light on Life’s Origins
An unusual mode of energy metabolism discovered in a newly identified microbe provides fresh insights into primitive life processes and offers promising biotechnological applications.
Unearthed in the deep springs of northern California, this organism converts carbon dioxide into energy-rich chemicals using a previously unknown metabolic pathway, potentially mimicking early life mechanisms and paving the way for advancements in microbial manufacturing and biofuel production.
Discovery of Unique Microbe.