Toggle light / dark theme

Lymphedema and Cancer Treatment

Lymphedema is a chronic condition that affects many cancer survivors. It’s swelling caused by a buildup of lymph fluid, often as a result of cancer treatment. While it can’t be prevented, treatment can help to relieve swelling and improve the ability to function day to day.


Lymphedema is a side effect of some cancer treatments. Learn about symptoms and ways you can manage and treat swelling in your arm or leg caused by

Key brain cells linked to repetitive behaviors in psychiatric diseases

🧠🔬💡


A significant reduction of GABA and monoamine oxidase B (MOAB), the latter of which is an astrocytic enzyme that produces GABA, was also observed in Crym KO mice. These observations suggest that increased synaptic excitation from IOFC terminals leads to lower levels of tonic GABA, which causes reduced presynaptic inhibition.

Study significance

Crym-expressing astrocytes in the central striatum regulate the release of GABA from the IOFC into the central striatum. Importantly, the loss of this regulation can lead to perseveration, which involves the continuation or repetition of a response or activity, a phenotype that is often reported in OCD, autism, Tourette’s syndrome, and HD.

Using AI to predict the spread of lung cancer

For decades, scientists and pathologists have tried, without much success, to come up with a way to determine which individual lung cancer patients are at greatest risk of having their illness spread, or metastasize, to other parts of the body.

Now a team of scientists from Caltech and the Washington University School of Medicine in St. Louis has fed that problem to (AI) algorithms, asking computers to predict which cancer cases are likely to metastasize. In a novel of non-small cell lung cancer (NSCLC) patients, AI outperformed expert pathologists in making such predictions.

These predictions about the progression of lung cancer have important implications in terms of an individual patient’s life. Physicians treating early-stage NSCLC patients face the extremely difficult decision of whether to intervene with expensive, toxic treatments, such as chemotherapy or radiation, after a patient undergoes lung surgery. In some ways, this is the more cautious path because more than half of stage I–III NSCLC patients eventually experience metastasis to the brain. But that means many others do not. For those patients, such difficult treatments are wholly unnecessary.

New insights into the growth and spread of cancer cells

Cancer cells are characterized by their aggressiveness: they grow rapidly and spread to other parts of the body. To enable this, numerous mechanisms come into play, and one of them involves a protein called MYC, which activates certain genes on the cancer cell’s DNA strand, causing the cancer cell to grow and divide.

The MYC protein is also present in healthy individuals, where it plays a crucial role in regulating many .

“When cancer occurs, it is due to an accumulation of mutations in our DNA, often resulting in the overactivation of the MYC protein. Therefore, this protein plays a crucial role in most cancer forms,” says Rasmus Siersbæk, head of research at the Department of Biochemistry and Molecular Biology, University of Southern Denmark.

Advances Needed for Diabetic Foot Infections, Experts Say

With a mobile app powered by artificial intelligence (AI), Caitlin Hicks, MD, MS, reviews selfies of patients’ feet in real time to track their wounds as part of a clinical trial. The app saves time for Hicks, a vascular surgeon at Johns Hopkins Medicine, but also reduces clinic trips for her patients with diabetes in inner-city Baltimore, many of whom are elderly and less mobile or have other socioeconomic barriers to care. Hicks knows that for these patients, wound vigilance is the linchpin to preventing infection, hospitalization, or, worse, amputation or even death.

Despite their crushing toll, diabetic foot infections remain stubbornly hard to treat, but multidisciplinary care teams, new drugs and devices on the horizon, and practical solutions to socioeconomic factors could budge the needle.

Regulatory mechanism that keeps the immune system in check identified

Researchers from the UoC’s Center for Biochemistry at the Faculty of Medicine and the UoC CECAD Cluster of Excellence in Aging Research have discovered that an excessive immune response can be prevented by the intramembrane protease RHBDL4.

In a study now published in Nature Communications under the title “RHBDL4-triggered downregulation of COPII adaptor protein TMED7 suppresses TLR4-mediated inflammatory signaling,” the previously unknown regulatory mechanism is described.

The researchers discovered that the cleavage of a cargo receptor by a so-called intramembrane reduces the localization of a central immune receptor on the and thereby the risk of an overreaction of the immune system.