New research has identified iron deficiencies in the blood as a major culprit in long COVID cases.
A new report from the University of Cambridge was able to connect that low iron levels contributed to inflammation and anemia and halted healthy red blood cell production in patients just two weeks after being diagnosed with COVID-19.
Many of those individuals reported having long COVID — which has recently been associated with a frightening IQ loss from brain fog — within months, according to the study, published in Nature Immunology.
A pair of chemists at the University of Groningen in the Netherlands, has observed communication between rotors in a molecular motor. In their study, reported in the Journal of the American Chemical Society, Carlijn van Beek and Ben Feringa conducted experiments with alkene-based molecular motors.
Molecular motors are natural or artificial molecular machines that convert energy into movement in living organisms. One example would be DNA polymerase turning single-stranded DNA into double-stranded DNA. In this new effort, the researchers were experimenting with light-driven, alkene-based molecular motors, using light to drive molecular rotors. As part of their experiments, they created a motor comprising three gears and two rotors and observed an instance of communication between two of the rotors.
To build their motor, the researchers started with parts of existing two motors, bridging them together. The resulting isoindigo structure, they found, added another dimension to their motor relative to other synthesized motors—theirs had a doubled, metastable intermediary connecting two of the rotors, allowing for communication between the two.
Study shows #Glucagon is #Key for #Kidney #Health.
When researchers removed receptors for this hormone (best known for promoting blood sugar production in the liver) from mouse kidneys, the animals developed symptoms akin to chronic kidney disease…
Glucagon, a hormone best known for promoting blood sugar production in the liver, also appears to play a key role in maintaining kidney health. When UT Southwestern Medical Center researchers removed receptors for this hormone from mouse kidneys, the animals developed symptoms akin to chronic kidney disease (CKD).
Their findings, published in Cell Metabolism, shed new light on glucagon’s physiological functions and provide new insights into CKD, a disease that affects hundreds of millions of people around the globe, according to the National Institute of Diabetes and Digestive and Kidney Diseases.
“Our study defines important protective effects of glucagon for kidney health and normal systemic metabolic well-being of the entire organism,” said study leader Philipp Scherer, Ph.D., Professor of Internal Medicine and Cell Biology and Director of UTSW’s Touchstone Center for Diabetes Research.
A recent study conducted at Tel Aviv University has devised a large mechanical system that operates under dynamical rules akin to those found in quantum systems. The dynamics of quantum systems, composed of microscopic particles like atoms or electrons, are notoriously difficult, if not impossible, to observe directly.
However, this new system allows researchers to visualize phenomena occurring in specialized “topological” materials through the movement of a system of coupled pendula.
The research is a collaboration between Dr. Izhar Neder of the Soreq Nuclear Research Center, Chaviva Sirote-Katz of the Department of Biomedical Engineering, Dr. Meital Geva and Prof. Yair Shokef of the School of Mechanical Engineering, and Prof. Yoav Lahini and Prof. Roni Ilan of the School of Physics and Astronomy at Tel Aviv University and was recently published in the Proceedings of the National Academy of Sciences.
A recent study conducted at Tel Aviv University has devised a large mechanical system that operates under dynamical rules akin to those found in quantum systems. The dynamics of quantum systems, composed of microscopic particles like atoms or electrons, are notoriously difficult, if not impossible, to observe directly.
However, this new system allows researchers to visualize phenomena occurring in specialized “topological” materials through the movement of a system of coupled pendula.
The research is a collaboration between Dr. Izhar Neder of the Soreq Nuclear Research Center, Chaviva Sirote-Katz of the Department of Biomedical Engineering, Dr. Meital Geva and Prof. Yair Shokef of the School of Mechanical Engineering, and Prof. Yoav Lahini and Prof. Roni Ilan of the School of Physics and Astronomy at Tel Aviv University and was recently published in the Proceedings of the National Academy of Sciences.
A recent study conducted at Tel Aviv University has devised a large mechanical system that operates under dynamical rules akin to those found in quantum systems. The dynamics of quantum systems, composed of microscopic particles like atoms or electrons, are notoriously difficult, if not impossible, to observe directly.
However, this new system allows researchers to visualize phenomena occurring in specialized “topological” materials through the movement of a system of coupled pendula.
The research is a collaboration between Dr. Izhar Neder of the Soreq Nuclear Research Center, Chaviva Sirote-Katz of the Department of Biomedical Engineering, Dr. Meital Geva and Prof. Yair Shokef of the School of Mechanical Engineering, and Prof. Yoav Lahini and Prof. Roni Ilan of the School of Physics and Astronomy at Tel Aviv University and was recently published in the Proceedings of the National Academy of Sciences.
A recent study conducted at Tel Aviv University has devised a large mechanical system that operates under dynamical rules akin to those found in quantum systems. The dynamics of quantum systems, composed of microscopic particles like atoms or electrons, are notoriously difficult, if not impossible, to observe directly.
However, this new system allows researchers to visualize phenomena occurring in specialized “topological” materials through the movement of a system of coupled pendula.
The research is a collaboration between Dr. Izhar Neder of the Soreq Nuclear Research Center, Chaviva Sirote-Katz of the Department of Biomedical Engineering, Dr. Meital Geva and Prof. Yair Shokef of the School of Mechanical Engineering, and Prof. Yoav Lahini and Prof. Roni Ilan of the School of Physics and Astronomy at Tel Aviv University and was recently published in the Proceedings of the National Academy of Sciences.
In a collaboration with Kyushu University, a team of Harvard University scientists says their new research into the ability to regrow lost limbs sets the stage’ for proper limb regeneration.
Of course, some animals, including amphibians, can regrow a lost arm or leg, but the team behind this latest research hopes to bring that ability to humans who hope to regrow lost limbs.
The researchers also say this process could facilitate the growing of limbs in animals that lost them to evolution, such as snakes.
Cancer survivor, Gail Baron Simpson, shares her personal journey to treatment success in this in-depth interview with Precision Oncology specialist and CTOAM co-founder, Alex Rolland, and Michelle Morand, Precision Cancer Medicine Advocacy specialist and CTOAM co-founder.
Please watch our short intro video to Gail’s story first! 👉 • Introduction to Gail’s Incredible Can…
After being diagnosed with a rare orphan cancer, Gail discusses her experience with navigating the challenges of standard healthcare and her decision to hire CTOAM to help integrate Precision Cancer Medicine into her cancer care – and how she was able to advocate for the right treatment and eventually find success.
Join us for an extraordinary livestream webinar, ‘Paving the Way for the Future: Learning from 4 Biostasis Cases and the Challenges and Advancements at Tomorrow Bio’ featuring esteemed speakers Dr. Emil Kendziorra and Dr. Irishikesh Santhosh from Tomorrow Biostasis GmbH. This pivotal session, scheduled for March 18th, 2024, at 7:00 PM, will delve into the latest advancements and real-world applications of biostasis, focusing on the detailed processes and outcomes associated with four distinct patient cases from 2023.
In this webinar, we will explore the intricate procedures and challenges encountered during the biostasis process, including stabilization in the face of cardiopulmonary arrest, the nuances of surgical and perfusion procedures, and the critical cooldown process for long-term storage. Our experts will unpack the innovative techniques employed, the utilization of cryoprotectant solutions, cooling techniques, and the diligent monitoring through CT scans, alongside the resolution of unforeseen technical challenges.
Each case report offers a unique glimpse into the complexities of biostasis, presenting the issues faced, such as equipment malfunctions and procedural hurdles, and the subsequent strategies for resolution or planned mitigations. Through graphical presentations on temperature, pressure, and refractive index, and detailed analyses of CT scans, attendees will gain comprehensive insights into the cutting-edge methods and equipment pivotal to biostasis.
This webinar is not just a learning opportunity but a platform for interactive discussion. We encourage all attendees to engage with our speakers through live questions, share their insights, and participate in real-time polls. Whether you’re a seasoned medical professional, an avid student of science, or simply fascinated by the potential of biostasis to preserve life, this session promises to be both enlightening and engaging.
Mark your calendars for March 18th, 2024, at 7:00 PM, and prepare to be part of a groundbreaking exploration into the future of biostasis. Your participation and questions will enrich our collective understanding and foster a deeper discussion on the possibilities that lie ahead.