Toggle light / dark theme

Rewriting the Rules: Scientists Discover New Superconductor With “Unconventional” Properties

Researchers from Tokyo Metropolitan University have identified a groundbreaking new superconducting material. By combining iron, nickel, and zirconium in specific ratios, they synthesized a novel transition metal zirconide, with varying proportions of iron and nickel.

While pure iron zirconide and nickel zirconide do not exhibit superconductivity, the new mixtures demonstrate superconducting properties, forming a “dome-shaped” phase diagram characteristic of unconventional superconductors. This finding represents a significant step forward in the search for high-temperature superconducting materials that could have widespread applications.

Superconductors are already integral to advanced technologies, such as superconducting magnets in medical imaging devices, maglev trains, and power transmission cables. However, current superconductors require cooling to extremely low temperatures, typically around 4 Kelvin, which limits their practicality. Researchers are focused on discovering materials that achieve zero electrical resistance at higher temperatures, especially near the critical threshold of 77 Kelvin, where liquid nitrogen can replace liquid helium as a coolant—making the technology more accessible and cost-effective.

Urgent warning over deadly disease

A major measles alert has been issued for two Australian states.


An urgent measles warning has been issued for two states after a toddler arrived in Australia from Vietnam with the infectious and deadly disease.

The South Australian government issued a warning after being notified of a three-year-old infected with measles travelling from Vietnam on Singapore Airlines flight SQ279, landing in Adelaide about 8.45am on Tuesday January 14.

Over the week, the toddler visited a number of places, including Kmart and Coles supermarket in Ingle Farm Shopping Centre on Wednesday January 15 before attending the Women’s and Children’s Hospital on Friday January 17.

South African Doctor Makes History by Curing Deafness

Medical breakthroughs often change lives, but some redefine what’s possible for the future of healthcare. This historic achievement brings hope to millions around the world.

Discover the story of how one doctor’s groundbreaking work is reshaping what we know about hearing loss and recovery.


Imagine living in a world of perpetual silence—where the laughter of loved ones and the melody of a favorite song are mere concepts, never experienced. For millions across the globe, this silence is a daily reality caused by hearing loss. Yet, a breakthrough in medical science has rewritten the possibilities, turning silence into sound. At the center of this transformation stands Dr. Mashudu Tshifularo, a South African surgeon whose revolutionary use of 3D-printed implants has achieved what was once deemed impossible: curing deafness.

This pioneering advancement not only restores hearing but also represents a fusion of cutting-edge technology and unwavering human determination. Who is the man behind this incredible achievement, and how has his work reshaped the future for those living with hearing impairments? Dr. Tshifularo’s journey from humble beginnings to global acclaim is as inspiring as the innovation itself, offering a glimpse into the power of perseverance, creativity, and hope.

Dr. Mashudu Tshifularo’s journey is one of remarkable determination and vision, rooted in a deep sense of purpose. Born in South Africa’s Limpopo province, he grew up in a modest environment that shaped his resilience and curiosity. His passion for helping others led him to pursue a career in medicine, specializing in otolaryngology, the branch of medicine that deals with conditions of the ear, nose, and throat.

A man was cured of HIV and leukemia after stem cell transplant

Research into stem cells has paid off as 68-year-old Paul Edmonds remains effectively cured of both HIV and leukemia following treatment that included a breakthrough stem cell transplant in 2019. Now, five years after the treatment, Edmonds continues to live his life free of HIV and leukemia.

This makes Edmonds one of only five people in the world who have achieved full remission of HIV. Further, his 31 years of living with the virus also means he had it the longest out of the five in remission. It’s a striking accomplishment that he has remained in remission for so long and showcases just how effective these kinds of treatments can be.

Stem cell transplants aren’t a new idea, either. What particularly makes this treatment so effective and intriguing, though, is that the transplant donor had a rare genetic mutation called homozygous CCR5 delta 32. This mutation makes people immune to most types of HIV.

Fundraising for Founder-led Biotech

A blog webpage written by entrepreneur Matt Krisiloff which offers helpful advice to scientific founders of biotechnology companies on how to fundraise and manage relations with investors.

“Because of examples of great success in the broader technology world, we’re seeing the emergence of what I’d call a more ‘Silicon Valley’ mindset in biotech investing. This approach prizes technology development at the core of the company’s DNA and – drawing from examples in tech such as Microsoft and Meta and in biotech such as Regeneron and Genentech – recognizes that technical founders who can grow into business leaders often build more innovative and ultimately more successful companies. This shift has opened up new avenues for fundraising that founders should understand and look towards”

[](https://mattkrisiloff.com/2025/01/07/fundraising-for-found-led-biotech/)


At this point in my career across the biotech-related projects I’ve run, I’ve personally raised about $100 million. In some ways this feels like a lot, but given the scope of biotech and hard tech projects I care most about, it’s really just a drop in the bucket. From these experiences though, I’ve learned some things that I believe can help other founders navigate fundraising, and want to share them – especially for newer founders working on interesting technologies that may be approaching fundraising for the first time.

Most of what I am saying is for biotech, but I think a lot of the observations apply for medical devices and other hard science startup fundraising too.

Biotech exists in a unique corner of the investment world, one where the promise of revolutionary breakthroughs meets harsh realities of extended development timelines and significant capital requirements. This is truer today than ever – while the broader equity markets has seen unprecedented growth over the past two years, the biotech sector has remained in a relatively depressed state.

Scientists Create Tiny Motors that Mimic Nature

Scientists have built an artificial motor capable of mimicking the natural mechanisms that power life.

The finding, from The University of Manchester and the University of Strasbourg, published in the journal Nature, provides new insights into the fundamental processes that drive life at the molecular level and could open doors for applications in medicine, energy storage, and nanotechnology.

Professor David Leigh, lead researcher from The University of Manchester, said: Biology uses chemically powered molecular machines for every biological process, such as transporting chemicals around the cell, information processing or reproduction.

Mutations Drive Aging and Shape Epigenetic Clock

New research shows somatic mutations drive epigenetic changes tied to aging. This discovery reshapes our understanding of aging and challenges current anti-aging strategies.


Summary: A new study has uncovered a direct link between somatic mutations and epigenetic modifications, challenging established views on aging. Researchers found that random genetic mutations drive predictable changes in DNA methylation, offering new insights into the relationship between mutation accumulation and epigenetic clocks.

This suggests that epigenetic changes may track, rather than cause, aging, making it harder to reverse aging than previously thought. These findings redefine our understanding of aging at the molecular level and hold significant implications for future anti-aging therapies.

Complete recombination map of the human genome created

Scientists at deCODE genetics/Amgen have constructed a complete map of how human DNA is mixed as it is passed down during reproduction. The map marks a major step in the understanding of genetic diversity and its impact on health and fertility. It continues 25 years of research at deCODE genetics into how new diversity is generated in the human genome, and its relationship to health and disease.

The new map, appearing today in the online edition of Nature, is the first to incorporate shorter-scale shuffling, (non crossover) of grandparental DNA, which is difficult to detect due to the high DNA sequence similarity. The map also identifies areas of DNA that are devoid of major reshuffling, likely to protect critical genetic functions or prevent chromosomal problems. This insight offers a clearer picture of why some pregnancies fail and how the genome balances diversity with stability.

While this shuffling, known as , is essential for genetic diversity, errors in the process can lead to serious reproductive issues. These failures can result in genetic errors that prevent pregnancies from continuing, helping to explain why infertility affects around one in ten couples worldwide. Understanding this process offers new hope for improving fertility treatments and diagnosing pregnancy complications.

Mitochondria may be a promising therapeutic target for inflammatory diseases

Scientists in the laboratory of Navdeep Chandel, Ph.D., the David W. Cugell, MD, Professor of Medicine in the Division of Pulmonary and Critical Care, have discovered how mitochondria influence the body’s immune response through modulating specific cell signaling pathways, according to a study published in Science Advances.

The findings highlight the potential of targeting specifically in immune cells to treat a range of inflammation-related diseases.

“Therapies aimed at improving mitochondrial activity could benefit inflammatory diseases such as , sepsis, and chronic infections by enhancing the immune system’s ability to regulate inflammation,” said Chandel, also a professor of Biochemistry and Molecular Genetics and a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

/* */