Check out this astonishing publication by Durrant et al.
A bispecific non-coding RNA expressed by the IS110 family of mobile genetic elements forms the basis of a programmable genome-editing system that enables the insertion, excision or inversion of specific target DNA sequences.
The Road To Wisdom — Dr. Francis Collins, MD, PhD — Former Director, National Institutes of Health (NIH); Distinguished Investigator, Center for Precision Health Research, National Human Genome Research Institute.
Dr. Francis S. Collins, M.D., Ph.D., (https://www.francisscollins.com/) is the former Director of the U.S. National Institutes of Health (NIH), where as the longest serving director of NIH (spanning 12 years and three presidencies) he oversaw the work of the largest supporter of biomedical research in the world, from basic to clinical research.
Dr. Collins continues to serve as NIH Distinguished Investigator. Center for Precision Health Research, at the National Human Genome Research Institute (NHGRI — https://irp.nih.gov/pi/francis-collins).
Dr. Collins is a physician-geneticist noted for his landmark discoveries of disease genes and his leadership of the international Human Genome Project, which culminated in April 2003 with the completion of a finished sequence of the human DNA instruction book. He served as director of the National Human Genome Research Institute at the NIH from 1993–2008.
Dr. Collins’ research laboratory has discovered a number of important genes, including those responsible for cystic fibrosis, neurofibromatosis, Huntington’s disease, a familial endocrine cancer syndrome, and most recently, genes for type 2 diabetes, and the gene that causes Hutchinson-Gilford progeria syndrome, a rare condition that causes premature aging.
Immune-focused drugs such as nivolumab and ipilimumab have greatly improved the survival of people battling advanced melanomasA new trial finds a combo of these drugs can help people survive at least six years, on average, and maybe moreNo new ‘safety signals’ from use of the drugs were noted over the decade-long trial.
Scientists have discovered a mutation in SARS-CoV-2, the virus that causes COVID-19, that plays a key role in its ability to infect the central nervous system. The findings may help scientists understand its neurological symptoms and the mystery of “long COVID,” and they could one day even lead to specific treatments to protect and clear the virus from the brain.
The new collaborative study between scientists at Northwestern University and the University of Illinois-Chicago uncovered a series of mutations in the SARS-CoV-2 spike protein (the outer part of the virus that helps it penetrate cells) that enhanced the virus’s ability to infect the brains of mice.
“Looking at the genomes of viruses found in the brain compared to the lung, we found that viruses with a specific deletion in spike were much better at infecting the brains of these animals,” said co-corresponding author Judd Hultquist, assistant professor of medicine (infectious diseases) and microbiology-immunology at Northwestern University Feinberg School of Medicine. “This was completely unexpected, but very exciting.”
Even with these upgrades and alternatives, a tumor’s protective shield is still difficult to penetrate. This month, a team from Asgard Therapeutics and Lund University took a clever new approach to tackle tumors from within. The work was.
Using a technology called cellular reprogramming, the team transformed tumor cells in mice into a type of immune cell called cDC1 cells. These cells are master regulators of the immune system. They’re rare inside tumors but when present can trigger powerful immune responses that eat away at the cancer’s protective shield and recruit T cells to the target.
Mice treated with the gene therapy remained cancer-free for at least 100 days and resisted cancer resurgence in a lab test.
In a new study, scientists from Arizona State University and their collaborators studied genetic changes in a naturally isolated population of Daphnia pulex, a species of water flea. This tiny crustacean, nearly invisible to the naked eye, plays a vital role in freshwater ecosystems and provides a valuable insight into natural selection and evolution.
Their findings, recently published in the journal Proceedings of the National Academy of Sciences (PNAS), rely on a decade of research. Using advanced genomic techniques, the research team analyzed DNA samples from nearly 1,000 Daphnia.
They discovered that the strength of natural selection on individual genes varies significantly from year to year, maintaining variation and potentially enhancing the ability to adapt to future changing environmental conditions by providing raw material for natural selection to act on.
Study discovers an electric current in the gut that attracts pathogens like Salmonella. Researchers have discovered a novel bioelectrical mechanism that pathogens like Salmonella use to find entry points in the gut lining that would allow pathogens to pass and cause infection.
How do bad bacteria find entry points in the body to cause infection?
This question is fundamental for infectious disease experts and people who study bacteria. Harmful pathogens, like Salmonella, find their way through a complex gut system where they are vastly outnumbered by good microbes and immune cells. Still, the pathogens navigate to find vulnerable entry points in the gut that would allow them to invade and infect the body.
Outperforms dermatologists in detecting melanoma, offering better diagnosis for challenging cases and improving patient care. 🩺🖥️
Heinlein, Maron, Hekler et al. evaluate an AI algorithm for detecting melanoma and compare its performance to that of dermatologist on a prospectively collected, external, heterogeneous dataset. The AI exhibits a significant performance advantage, especially in diagnosing challenging cases.
If you’ve ever opened a box from IKEA and wished the pieces inside could somehow spontaneously merge to form a table or chair, then a simple virus could have a thing or two to teach you. Self-assembly of complex molecules is essential for a wide array of biological structures, including proteins, cell membranes, or even entire viruses. Supramolecular chemistry is a field of study that attempts to build large molecules out of a discrete number of…
Researchers went ‘bioprospecting’ in marine microbes, looking for those that can perform helpful functions like eating plastic or generating antibiotics. | Earth And The Environment.