Toggle light / dark theme

Covid might cure cancer. No, you didn’t read that wrong

Illinois researchers have found an unbelievable link between infection with Covid and cancer regression where tumors decrease in size or extent.

Using animals and tissue from humans, scientists observed that the RNA molecules of the SARS-CoV-2 virus, which is responsible for the disease, triggered the development of a special cell in the immune system that has anti-cancer properties.

Known as “inducible nonclassical monocytes” or “I-NCMs,” these special cells attack cancer cells and could be used to treat cancers that are resistant to current therapies, according to Northwestern Medicine Canning Thoracic Institute scientists.

Nanorobots move closer to clinical trials with new model that helps them navigate through the bloodstream

From repairing deadly brain bleeds to tackling tumors with precise chemotherapy, micro/nano-robots (MNRs) are a promising, up-and-coming tool that have the power to substantially advance health care. However, this tool still has difficulty navigating within the human body—a limitation that has prevented it from entering clinical trials.

Mathematical models are crucial to the optimal design and navigation of MNRs, but the are inadequate. Now, new, promising research from the University of Saskatchewan (USask) may allow MNRs to overcome the limitations that previously prevented their widespread use.

USask College of Engineering professor Dr. Chris Zhang (Ph. D.) and two Ph.D. students (Lujia Ding, N.N Hu) along with two USask alumni (Dr. Bing Zhang (Ph. D.), Dr. R. Y. Yin (Ph. D.)) are the first team to develop a highly accurate mathematical model that optimizes the design of MNRs which improves their navigation, allowing them to travel efficiently through the bloodstream. Their work was recently published in Nature Communications.

Cognitive neuroscientists discover new blueprint for making and breaking habits

Cognitive neuroscientists at Trinity College Dublin have published new research describing a brand new approach to making habit change achievable and lasting.

This innovative framework has the potential to significantly improve approaches to personal development, as well as the clinical treatment of compulsive disorders (for example , addiction, and eating disorders).

The research was led by Dr. Eike Buabang, Postdoctoral Research Fellow in the lab of Professor Claire Gillan in the School of Psychology, has been published as a paper titled “Leveraging for making and breaking real-world habits” in the journal Trends in Cognitive Sciences.

New method of generating eco-friendly energy uses piezoelectricity

Researchers at University of Limerick in Ireland have developed a new method of growing organic crystals that can be used for energy-harvesting applications.

The energy that is being harvested as part of this research is being generated by squeezing amino acid molecules, the building blocks of proteins that exist in the human body.

Piezoelectricity, which translates from Greek to mean pressing electricity, usually found in ceramics or polymers, is also present in human biomolecules.

Brains Not Required: Cells Exhibit Surprising Learning Abilities

A new study demonstrates that even simple single-cell organisms, such as ciliates and amoebae, exhibit habituation, a basic form of learning previously thought to be exclusive to more complex beings.

This revelation not only changes our understanding of cellular capabilities but also opens up possibilities for applications in cancer immunology, suggesting that our immune cells might be reprogrammed to better recognize and attack cancer cells.

A dog learns to sit on command. A person tunes out the steady hum of a washing machine while engrossed in a book. The ability to learn and adapt is a cornerstone of evolution and survival.

Platelets gliding along surfaces: Using this concept to improve anti-thrombotic treatments

The risk for thrombosis on equipment within coronary arteries during PCI – and the potential dangerous complications – has led to nearly 50 years of targeted research on the mechanisms of normal and pathologic thrombosis. This research has in turn led to the development of blood-thinning drug treatments to prevent thrombosis during and after PCI. However, the blood thinning (‘anti-thrombotic’) therapies can also lead to life-threatening excessive bleeding. Research to identify the optimal balance of anti-thrombotic drugs that minimises both pathologic thrombosis and excessive bleeding continues through today.

Dr Scott Denardo at Duke University Medical Center in the USA has modelled the behaviour of platelets inside blood vessels and near medical device surfaces. Some of his observations are just now entering the contemporary understanding of thrombosis. Denardo believes that applying these observations can refine existing anti-thrombotic therapies to improve their safety (less bleeding) while not compromising their effectiveness (preventing thrombosis on PCI equipment, including stents).

The future of ultrafast electronics

Physicist Matthias Kling studies photons and the things science can do with ultrafast pulses of X-rays. These pulses last just attoseconds – a billionth of a billionth of a second, Kling says. He uses them to create slo-mo “movies” of electrons moving through materials like those used in batteries and solar cells. The gained knowledge could reshape fields like materials science, ultrafast and quantum computers, AI, and medical diagnostics, Kling tells host Russ Altman on this episode of Stanford Engineering’s The Future of Everything podcast.

/* */