БЛОГ

Archive for the ‘biotech/medical’ category: Page 683

Dec 14, 2022

An integrated, net-negative system captures carbon and produces ethylene

Posted by in categories: biotech/medical, chemistry, food

Engineers at the University of Illinois Chicago have built a machine that captures carbon from flue gas and converts it to ethylene.

The device integrates a system with an ethylene conversation system for the first time. Moreover, the system not only runs on electricity, but it also removes more carbon from the environment than it generates—making it what scientists call net-negative on carbon emissions.

Among manufactured chemicals worldwide, ethylene ranks third for after ammonia and cement. Ethylene is used not only to create plastic products for the packaging, agricultural and automotive industries but also to produce chemicals used in antifreeze, medical sterilizers and vinyl siding for houses, for example.

Dec 14, 2022

Epicuros — Artificial Intelligence vol. 4 (Dark Ambient, IDM, Noise, Electro)

Posted by in categories: biotech/medical, robotics/AI

Artificial Intelligence vol. 4 — The Rise of the Machines.

01. Intro — Roy meets Tyrell.
02. Vangelis — Los Angeles, November 2019 [01:08]
03. Mahindra Waves — DNA [03:41]
04. Between Interval — Sea of Darkness [09:00]
05. Carl Sagan’s last Interview — The Warning [11:50]
06. Sam Hulick (Mass Effect OST) — Normandy [12:52]
07. Kammarheit — Provenience [14:10]
08. Vataff Project — Owl [18:03]
09. Field Rotation — Tiefflug [24:50]
10. Juno Reactor — Nitrogen Part 1 [31:28]
11. Mono Junk — Enter [38:30]
12. Gus Gus vs. T-world — Esja [43:10]
13. Aphex Twin — On [51:10]
14. Sephira — Memory Access [56:40]
15. HECQ — 8 [01:00:20]
16. Distant System — Pupillary response [01:01:20]
17. Blastromen — Follow The Command [01:03:20]
18. Blastromen — Battlenet [01:09:50]
19. Asura — Regenesis [01:16:53]
20. Field Rotation — Regenzeit [01:21:50]
21. Vangelis — Blade Runner (End Titles) [01:26:20]

Dec 13, 2022

New 3D model shows how the paradise tree snake uses aerial undulation to fly

Posted by in categories: biotech/medical, engineering, mathematics

When the paradise tree snake flies from one tall branch to another, its body ripples with waves like green cursive on a blank pad of blue sky. That movement, aerial undulation, happens in each glide made by members of the Chrysopelea family, the only known limbless vertebrates capable of flight. Scientists have known this, but have yet to fully explain it.

For more than 20 years, Jake Socha, a professor in the Department of Biomedical Engineering and Mechanics at Virginia Tech, has sought to measure and model the biomechanics of snake flight and answer questions about them, like that of aerial undulation’s functional role. For a study published by Nature Physics, Socha assembled an interdisciplinary team to develop the first continuous, anatomically-accurate 3D mathematical model of Chrysopelea paradisi in flight.

The team, which included Shane Ross, a professor in the Kevin T. Crofton Department of Aerospace and Ocean Engineering, and Isaac Yeaton, a recent mechanical engineering doctoral graduate and the paper’s lead author, developed the 3D model after measuring more than 100 live snake glides. The model factors in frequencies of undulating waves, their direction, forces acting on the body, and mass distribution. With it, the researchers have run virtual experiments to investigate aerial undulation.

Dec 13, 2022

Brain Implants are Here: Blackrock’s Neuroport & Synchron’s Stentrode

Posted by in categories: biotech/medical, computing, mobile phones, neuroscience

Neurotechnology and Brain-Computer Interfaces are advancing at a rapid pace and may soon be a life-changing technology for those with limited mobility and/or paralysis. There are already two brain implants, Blackrock Neurotech’s NeuroPort and Synchron’s Stentrode, that have been approved to start clinical trials under an Investigational Device Exemption. In this video, we compare these devices on the merits of safety, device specifications, and capability.

Thanks to Blackrock Neurotech for sponsoring this video. The opinions expressed in this video are that of The BCI Guys and should be taken as such.

Continue reading “Brain Implants are Here: Blackrock’s Neuroport & Synchron’s Stentrode” »

Dec 13, 2022

Nanotechnology-Driven Therapeutic Interventions in Wound Healing: Potential Uses and Applications

Posted by in categories: biotech/medical, nanotechnology

Year 2017 face_with_colon_three


The chronic nature and associated complications of nonhealing wounds have led to the emergence of nanotechnology-based therapies that aim at facilitating the healing process and ultimately repairing the injured tissue. A number of engineered nanotechnologies have been proposed demonstrating unique properties and multiple functions that address specific problems associated with wound repair mechanisms. In this outlook, we highlight the most recently developed nanotechnology-based therapeutic agents and assess the viability and efficacy of each treatment, with emphasis on chronic cutaneous wounds. Herein we explore the unmet needs and future directions of current technologies, while discussing promising strategies that can advance the wound-healing field.

Dec 13, 2022

MIT engineers design a soft, implantable ventilator

Posted by in category: biotech/medical

😗


For many of us, the act of breathing comes naturally. Behind the scenes, our diaphragm — the dome-shaped muscle that lies just beneath the ribcage — works like a slow and steady trampoline, pushing down to create a vacuum for the lungs to expand and draw air in, then relaxing as air is pushed out. In this way, the diaphragm automatically controls our lung capacity, and is the major muscle responsible for our ability to breathe.

But when the diaphragm’s function is compromised, the breathing instinct becomes a laborious task. Chronic diaphragm dysfunction can occur in people with ALS, muscular dystrophy, and other neuromuscular diseases, as well as patients with paralysis, and damage to the phrenic nerve, which stimulates the diaphragm to contract.

Continue reading “MIT engineers design a soft, implantable ventilator” »

Dec 13, 2022

Dance of the scrotal worms documented on video

Posted by in category: biotech/medical

Two doctors at the Max Super Specialty Hospital in India has documented the filarial dance of scrotal worms on video. In the video, the undulations of live worms residing in a male patient’s scrotum can be seen.

The began as a 26-year-old man came to the hospital complaining of testicular pain. He told them it was associated with swelling of his scrotum and had been bothering him for approximately one month. He also had a slight fever. Suspecting some type of parasite, the doctors first examined the man using ultrasound after which they extracted some of the fluid that had built up in the scrotum for inspection by lab techs. They also took for the same purpose.

Continue reading “Dance of the scrotal worms documented on video” »

Dec 13, 2022

Nanotech Injections Restore Vision In Blind Rats

Posted by in categories: biotech/medical, cyborgs, life extension, nanotechnology

Year 2020 face_with_colon_three


An international team of scientists have restored the vision in blind rats using a nanoparticle-based artificial retina prosthesis that can be injected directly into the eye. The scientific advance has been successfully demonstrated for a period of eight months without the need for surgery. While it is still early days for the research, it suggests it might one day be possible to use the conjugated polymer nanoparticle (P3HT-NP) treatment in humans to correct eye problems –ranging from hereditary retinal dystrophies to the incredibly common age-related macular degeneration.

“In our ‘liquid retina device,’ P3HT nanoparticles spread out over the entire subretinal space and promoted light-dependent activation of spared inner retinal neurons, recovering subcortical, cortical and behavioral visual responses,” Fabio Benfenati, research director at the Italian Institute of Technology, told Digital Trends. “We think that P3HT-NPs provide a new avenue in retinal prosthetics.”

Continue reading “Nanotech Injections Restore Vision In Blind Rats” »

Dec 13, 2022

Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers

Posted by in categories: biotech/medical, computing, neuroscience

Year 2018 😗


State-of-the-art software tools for neuronal network simulations scale to the largest computing systems available today and enable investigations of large-scale networks of up to 10% of the human cortex at a resolution of individual neurons and synapses. Due to an upper limit on the number of incoming connections of a single neuron, network connectivity becomes extremely sparse at this scale. To manage computational costs, simulation software ultimately targeting the brain scale needs to fully exploit this sparsity. Here we present a two-tier connection infrastructure and a framework for directed communication among compute nodes accounting for the sparsity of brain-scale networks. We demonstrate the feasibility of this approach by implementing the technology in the NEST simulation code and we investigate its performance in different scaling scenarios of typical network simulations. Our results show that the new data structures and communication scheme prepare the simulation kernel for post-petascale high-performance computing facilities without sacrificing performance in smaller systems.

Modern neuroscience has established numerical simulation as a third pillar supporting the investigation of the dynamics and function of neuronal networks, next to experimental and theoretical approaches. Simulation software reflects the diversity of modern neuroscientific research with tools ranging from the molecular scale to investigate processes at individual synapses (Wils and De Schutter, 2009) to whole-brain simulations at the population level that can be directly related to clinical measures (Sanz Leon et al., 2013). Most neuronal network simulation software, however, is based on the hypothesis that the main processes of brain function can be captured at the level of individual nerve cells and their interactions through electrical pulses. Since these pulses show little variation in shape, it is generally believed that they convey information only through their timing or rate of occurrence.

Dec 13, 2022

Living robots made in a lab have found a new way to self-replicate, researchers say

Posted by in categories: biotech/medical, life extension, robotics/AI

Year 2021 face_with_colon_three


Xenobots, a type of programmable organism made from frog cells, can replicate by spontaneously sweeping up loose stem cells, researchers say. This could have implications for regenerative medicine.

Page 683 of 2,621First680681682683684685686687Last