Toggle light / dark theme

Researchers publishing in Physical Review X have discovered compounds that can double the efficiency of the sirtuin SIRT3 in processing NAD+.

Looking for a new way to boost enzymes

The researchers begin their paper by noting that most drugs administered to people are geared towards inhibition of particular enzymes in order to treat a disease. In this case, however, the goal is the opposite: to boost the function of an enzyme, thereby boosting a healthy phenotype rather than battling back a diseased one.

Summary: A study analyzing data from over 2 million veterans found that GLP-1 receptor agonists, popular weight-loss drugs like Ozempic and Wegovy, provide significant neurological and behavioral health benefits, including reduced risks of addiction, Alzheimer’s, and dementia. However, they also pose risks for pancreatitis and kidney conditions, emphasizing the need for careful monitoring.

The drugs mimic hormones that curb appetite and aid weight loss but may act on brain regions tied to impulse control and inflammation, explaining their broad effects. Researchers stress that while the benefits are modest, they may be impactful for conditions with limited treatment options, highlighting both their potential and limitations.

A new way of interpreting standard blood tests could help doctors spot cancer warning signs sooner, according to scientists.

Experts believe it could flag 10,000 patients a year who have a raised blood platelet count before their cancer diagnosis — leading to ‘earlier diagnosis and better patient outcomes’

Groundbreaking research uses brain stimulation to restore touch in prosthetics. Precise, stable sensations bring natural-like feedback closer, improving motor control and quality of life.


Summary: Researchers are making strides in restoring touch sensations to prosthetic limbs through brain stimulation. By using electrodes in the brain’s touch center, they can evoke stable, precise sensations, even allowing users to feel the shape and motion of objects.

This breakthrough could enable prosthetic users to perform tasks requiring fine motor control with confidence. Long-term tests show consistent sensation locations, critical for real-world usability.

Advanced stimulation patterns further enhance the tactile experience, mimicking natural touch. These innovations mark significant progress toward neuroprosthetics that improve quality of life for people with limb loss or sensory impairments.

A small dose of low-power laser light activated dental stem cells in rat molars to generate dentin, one of the major components of teeth. The finding may lead to new approaches to develop low-cost, non-invasive therapies for treating dental disease and tooth damage.

Dentists currently use inert materials to repair damaged teeth. Tissue regeneration would be an attractive alternative, because inert materials can fail with time and don’t provide the full function of the tissue. Stimulating regeneration of teeth, however, is a major challenge. Teeth are composed of several parts, including the pulp at the core, dentin in the middle, and enamel on the surface.

Stem cells, found throughout the body, can give rise to specialized cells. Researchers have been able to coax stem cells to transform (differentiate) into many types of cells in the laboratory before infusing them into the body. But these techniques are time consuming and can bring unwanted side effects.

Researchers have discovered how a cell surface protein called Aplp1 can play a role in spreading material responsible for Parkinson’s disease from cell-to-cell in the brain.

Promisingly, an FDA-approved cancer drug that targets another protein called Lag3 – which interacts with Aplp1 – blocks the spread in mice, suggesting a potential therapy may already exist.

In a paper published last year, an international team of scientists describes how the two proteins work together to help harmful alpha-synuclein protein clumps get into brain cells.

Red meat has been a part of diets worldwide since early man. It is an excellent source of protein, vitamins (such as B vitamins) and minerals (such as iron and zinc). However, red meat has long been associated with increasing the risk of heart disease, cancer and early death. What may not be so well known is the link between red meat consumption and type 2 diabetes.

A paper published in The Lancet in September 2024 highlighted this link to type 2 diabetes using data from the Americas, the Mediterranean, Europe, south-east Asia and the Western Pacific (20 countries included).

This recent study, with nearly 2 million participants, found that high consumption of unprocessed red meat, such as beef, lamb and pork, and processed meat, such as bacon, salami and chorizo, increased the incidence of type 2 diabetes.

Researchers at Texas Biomed have identified nine mutations in a strain of bird flu found in a person in Texas. Bad news: This strain shows an increased ability to cause disease and is more effective at replicating in the brain. Good news: Current approved antiviral treatments remain effective against this strain.

Researchers at the Texas Biomedical Research Institute (Texas Biomed) have identified a strain of bird flu isolated from a human in Texas that carries a distinctive set of mutations, making it more adept at replicating in human cells and causing severe disease in mice. This strain was compared to one found in dairy cattle, and the findings are detailed in Emerging Microbes & Infections.

The discovery underscores a significant concern about the H5N1 strains of bird flu currently circulating in the U.S.: the virus.

Scientists at Caltech and Princeton University have discovered that bacterial cells growing in a solution of polymers, such as mucus, form long cables that buckle and twist on each other, building a kind of “living Jell-O.”

The finding could be particularly important to the study and treatment of diseases such as cystic fibrosis, in which the mucus that lines the lungs becomes more concentrated, often causing bacterial infections that take hold in that mucus to become life threatening. This discovery could also have implications in studies of polymer-secreting conglomerations of bacteria known as biofilms—the slippery goo on river rocks, for example—and in industrial applications where they can cause equipment malfunctions and health hazards.

The work is described in a paper published on January 17 in the journal Science Advances.

OpenAI says it trained a new AI model called GPT-4b micro with Retro Biosciences, a longevity science startup trying to extend the human lifespan by 10 years, according to the MIT Technology Review.

Retro, which is backed by Sam Altman, has been working with OpenAI for roughly a year on this research, according to the report. The GPT-4b micro model tries to re-engineer proteins — a specific set called the Yamanaka factors — that can turn human skin cells into young-seeming stem cells. Retro believes these proteins are a promising step toward building human organs and providing supplies of replacement cells.

The model differs slightly from Google’s Nobel prize-winning AlphaFold, which predicts the shape of proteins, but it appears to be OpenAI’s first model that is custom-built for biological research. OpenAI and Retro tell the MIT Technology Review they plan to release research on the model and its outputs.