Toggle light / dark theme

Zapping stem cells could boost growth of new tissues and organs

Scientists in Melbourne have discovered how tiny electrical pulses can steer stem cells as they grow, opening the door to new improved ways of creating new tissues, organs, nerves and bones.

Dr. Amy Gelmi, a senior lecturer at RMIT University’s School of Science, led the work using advanced atomic force microscopy to track how stem cells change their structure when exposed to electrical stimulation.

The study reveals, for the first time, how living stem cells physically respond to external signals in real time—reshaping themselves within minutes and setting off changes that influence what type of cell they eventually become. The paper is published in the journal Advanced Materials Interfaces.

X-ray laser offers new look at protein movement inside cells

At European XFEL, researchers have observed in detail how the vital iron protein ferritin makes its way in highly dense environments—with implications for medicine and nanotechnology.

Inside biological cells, there is a dense crowd where millions of proteins move side by side, bump into each other or temporarily accumulate. At the same time, these proteins often have to fulfill important tasks at short notice. How exactly the proteins move in this confined space has been difficult to track until now.

An international research team led by Anita Girelli and Fivos Perakis, both from Stockholm University, has now used the European XFEL X-ray laser in Schenefeld near Hamburg to take a closer look at these movements—and discovered a surprising pattern. The results are published in Nature Communications.

Impaired touch perception in Alzheimer’s associated with Tau pathology and lower cognitive scores

Alzheimer’s disease (AD) is a neurodegenerative condition characterized by the progressive deterioration of brain cells, which prompts memory loss, a decline in mental functions and behavioral changes. Estimates suggest that this disease affects approximately 1 in 14 people who are more than 65 years old and over 35% of people who are over 85 years old.

Due to its prevalence and debilitating nature, AD has become the focus of numerous neuroscience and medical studies. Most of these studies examined brain regions and neurogenetic processes that appear to be different in people diagnosed with AD.

Recently, some neuroscientists gathered evidence suggesting that parts of the brain that support somatosensory processing (i.e., the interpretation of tactile stimuli, pressure and the body’s position in space), are also affected in individuals with AD. Yet the extent to which these tactile sensation-related deficits play a role in the cognitive decline typical of AD has not yet been determined.

Glassed-in DNA makes the ultimate time capsule

Year 2015 face_with_colon_three


IF YOU must preserve messages for people in the far future to read, Blu-ray discs and USB sticks are no good. For real long-term storage, you want a DNA time capsule.

Just 1 gram of DNA is theoretically capable of holding 455 exabytes – enough for all the data held by Google, Facebook and every other major tech company, with room to spare. It’s also incredibly durable: DNA has been extracted and sequenced from 700,000-year-old horse bones. But conditions have to be right for it to last.

A rhythmically pulsing leaf-spring DNA-origami nanoengine that drives a passive follower

DNA nano machine year 2023.


An autonomous DNA-origami nanomachine powered by the chemical energy of DNA-templated RNA-transcription-consuming nucleoside triphosphates as fuel performs rhythmic pulsations is demonstrated. In combination with a passive follower, the nanomachine acts as a mechanical driver with molecular precision.

P-Rex1 limits the agonist-induced internalization of GPCRs independently of its Rac-GEF activity

P-Rex1 activates Rac downstream of GPCRs to regulate processes ranging from innate immunity to neuronal plasticity, its deregulation contributing to cancer. Here, Baker et al. show that P-Rex1 also controls GPCR trafficking, limiting agonist-induced GPCR internalization through an adapter function. Thus, P-Rex1 promotes GPCR responses in a dual manner.

/* */