Toggle light / dark theme

A new study published in the journal Nature reports results of the first-in-human phase 1 clinical trials of a novel immunotherapy approach for solid tumors expressing glypican-3 (GPC3). Researchers at Baylor College of Medicine and Texas Children’s Cancer Center led the study, which tested chimeric antigen receptor (CAR) T cells enhanced with the protein interleukin-15 (IL-15).

CAR T cells have shown limited efficacy in patients with solid cancers, despite dramatic success in some hematologic malignancies. Preclinical studies showed that the addition of IL-15, which helps T cells survive and multiply, could improve the performance of CAR T cell-based immunotherapies.

In these trials, researchers tested GPC3-specific CAR T cells co-expressing IL-15 in adults with hepatocellular carcinoma (HCC) (NCT02905188) and children with GPC3 expressing solid tumors, including HCC (NCT02932956). The first patient cohorts received GPC3-CAR T cells alone. The GPC3-CAR T cells were found to be safe, with peak cell expansion at two-weeks post-infusion; however, no objective antitumor responses were observed.

In a new Nature Communications study, scientists have developed a novel method for artificial cells to interact with their external environment without the need for complex modification processes.

This method could open new frontiers in , , and cell processes.

Biological cells are protected by a membrane, made of phospholipids, which modulates interactions with the outside environment. Recreating this in is challenging, requiring manual external modification of the membrane.

Researchers have linked a specific type of body fat to the abnormal proteins in the brain that are hallmarks of Alzheimer’s disease up to 20 years before the earliest symptoms of dementia appear, according to a study being presented at the annual meeting of the Radiological Society of North America (RSNA).

The researchers emphasize that lifestyle modifications targeted at reducing this fat could influence the development of Alzheimer’s disease.

“This crucial result was discovered because we investigated Alzheimer’s disease pathology as early as midlife—in the 40s and 50s—when the disease pathology is at its earliest stages, and potential modifications like weight loss and reducing visceral fat are more effective as a means of preventing or delaying the onset of the disease,” said lead study author Mahsa Dolatshahi, M.D., M.P.H., post-doctoral research associate at Mallinckrodt Institute of Radiology (MIR) at Washington University School of Medicine in St. Louis, Missouri.

Has human evolution come to a standstill? Advances in technology and medicine have radically changed the way we live, but could they be changing the course of our genetic future? The surprising truth behind how modern progress may be changing our biology — and what it means for our survival.

Junk DNA may not be so ‘junky’ after all – these regions may hide genetic material coding for tiny proteins involved in disease processes like cancer and immunology.


Our records of the human genome may still be missing tens of thousands of ‘dark’ genes. These hard-to-detect sequences of genetic material can code for tiny proteins, some involved in disease processes like cancer and immunology, a global consortium of researchers has confirmed.

They may explain why past estimates of our genome’s size were way larger than what the Human Genome Project discovered 20 years ago.

The new international study, still awaiting peer review, shows our library of human genes very much continues to be a work in progress, as more subtle genetic features are picked up with advances in technology, and as continued exploration uncovers gaps and errors in the record.

In a recent study published in The Lancet Diabetes Endocrinology, researchers evaluate the effects of glucagon-like peptide-1 (GLP-1) receptor agonists on kidney and cardiovascular outcomes.

Improving kidney and cardiovascular outcomes

Non-communicable diseases account for nearly 70% of global deaths, with diabetes and chronic kidney disease (CKD) among the top causes.

A research team affiliated with UNIST has unveiled an ultra-strong adhesive patch platform that adheres effectively to rough skin surfaces and shows remarkable motion adaptiveness during dynamic body movements, all while offering irritation-free removal on demand. The key to this technology lies in the surface adaptability inspired by barnacles and armadillo carapaces, which feature a tessellated structure that balances rigidity and flexibility.

The team, led by Professor Hoon Eui Jeong from the Department of Mechanical Engineering and Professor Jae Joon Kim from the Department of Electrical Engineering at UNIST, along with researchers from the National Institute of Ecology (NIE), has introduced a highly adhesive, detachable, and stretchable skin patch, known as the Motion Adaptive Tessellation Patch.

This innovative technology is garnering attention for its potential to facilitate the commercialization of wearable electronic devices, such as health care monitoring systems and transdermal drug delivery systems. The research is published in the journal Advanced Materials.

Vanderbilt University Medical Center-led research reveals subtle changes in the visual pathways of individuals with chronic mild traumatic brain injury (TBI), even when standard eye examinations show no abnormalities. These findings include structural and functional deficits despite participants showing normal visual acuity during clinical examination.

Mild TBI accounts for approximately 3 million cases in the U.S. each year. Up to 85% of TBI patients, regardless of injury severity, report such as , blurred vision, or difficulty reading. Persistent symptoms including memory problems, irritability, or slowed thinking often impact quality of life. Despite these symptoms, many individuals display no abnormalities during routine clinical evaluations such as fundus examinations.

In a case-control study, “Primary Visual Pathway Changes in Individuals With Chronic Mild Traumatic Brain Injury,” published in JAMA Ophthalmology, researchers reported that 78% of participants with mild TBI exhibited visual deficits when evaluated with a comprehensive battery of tests.

In a recent study published in the journal Cell, researchers investigate the role of fibroblastic reticular cells (FRCs) in creating T-cell-supportive niches within lung cancer tumors. The study findings elucidate how these specialized cells contribute to immune defenses by forming interconnected environments that facilitate T-cell activity, potentially enhancing anti-tumor immunity in non-small cell lung cancer (NSCLC).

What are FRCs?

The ability of the immune system to fight cancer relies on coordinated interactions between various immune cells and their specialized microenvironments.

A new study reveals that metformin, a widely prescribed diabetes medication, can significantly improve health parameters in aged male cynomolgus monkeys — possibly by slowing the aging process. The findings represent an important step toward understanding how pharmaceutical interventions might, in the future, extend the healthspan and delay age-related diseases in humans.