Toggle light / dark theme

Aging alters the protein landscape in the brain — diet can counteract this

A study by the Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) in Jena shows that the chemical composition of proteins in the brain undergoes fundamental changes with aging. In particular, ubiquitylation—a process that marks proteins and thus controls their activity and degradation—undergoes drastic changes in the aging brain. Interestingly, a change in nutrition, such as short-term dietary restriction, can partially revert some of these molecular patterns. These findings open up new opportunities to better understand the aging process of the brain and related diseases.

Cerebrospinal fluid motion in the brain captured in remarkable detail

Cerebrospinal fluid (CSF) is a clear and watery liquid that flows in and around the brain and spinal cord. Its functions include protecting parts of the nervous system, delivering nutrients and removing metabolic waste.

Some neurological diseases, including Alzheimer’s disease, have been linked to the abnormal accumulation of proteins in the brain, which can cause damage to neurons. This accumulation of proteins could potentially be linked to variations in the flow of CSF in specific brain regions.

Researchers at Leiden University Medical Center, University of Amsterdam and the German Center for Neurodegenerative Diseases (DZNE) recently developed a new approach to study the motion of CSF, which is based on the widely used imaging technique magnetic resonance imaging (MRI).

Engineers repurpose a mosquito proboscis to create a 3D printing nozzle

When it comes to innovation, engineers have long proved to be brilliant copycats, drawing inspiration directly from nature. But now some scientists are moving beyond simple imitation to incorporating natural materials into their designs. Stuck for ideas on how to create ultra-fine, low-cost 3D printing nozzles, researchers at McGill University in Canada repurposed the proboscis of a deceased female mosquito to create a sustainable, high-resolution 3D printing tip.

The work is published in the journal Science Advances.

High-resolution 3D printing is a process that creates three-dimensional objects with extremely fine details and very smooth surfaces. The technology is used in numerous fields such as aerospace, dentistry and biomedical research. However, its level of precision comes at a steep cost. The tiny nozzles can cost more than $80 per tip and are made of metal or plastic, both of which are nonbiodegradable.

Machine learning algorithm rapidly reconstructs 3D images from X-ray data

Soon, researchers may be able to create movies of their favorite protein or virus better and faster than ever before. Researchers at the Department of Energy’s SLAC National Accelerator Laboratory have pioneered a new machine learning method—called X-RAI (X-Ray single particle imaging with Amortized Inference)—that can “look” at millions of X-ray laser-generated images and create a three-dimensional reconstruction of the target particle. The team recently reported their findings in Nature Communications.

X-RAI’s ability to sort through a massive number of images and learn as it goes could unlock limits in data-gathering, allowing researchers to see molecules up close—and perhaps even on the move. “There is really no limit” to the dataset size it can handle, said SLAC staff scientist Frédéric Poitevin, one of the study’s principal investigators.

Oxygen deprivation drives dysfunctional neutrophil immunity

Low oxygen levels in the blood can alter the genetic makeup of key immune cells, weakening the body’s ability to fight infection, new research shows.

Scientists found that oxygen deprivation – known as hypoxia – changes the genetic material of immune cells called neutrophils, reducing their capacity to destroy harmful microbes.

The team discovered that low oxygen appears to leave a lasting mark on the bone marrow cells that produce neutrophils, meaning the impact can persist after oxygen levels return to normal.

Screening of Single-Domain Antibodies to Adeno-Associated Viruses with Cross-Serotype Specificity and a Wide pH Tolerance

Adeno-associated virus (AAV) vectors are the preferred gene delivery tool in gene therapy owing to their safety, long-term gene expression, broad tissue tropism, and low immunogenicity. Affinity ligands that can bind multiple AAV serotypes endure harsh clean-in-place (CIP) conditions and are critical for industrial-scale purification. However, current ligands lack broad serotype recognition and adequate alkaline stability, which limits their reusability in large-scale manufacturing. In this study, we employed a competitive biopanning strategy to isolate a single-domain antibody (VHH) that simultaneously binds AAV2, AAV8, and AAV9. The VHH retained structural integrity and binding activity after exposure to 0.1 M NaOH, demonstrating robust alkaline stability.

Adipokines as Clinically Relevant Therapeutic Targets in Obesity

Adipokines provide an outstanding role in the comprehensive etiology of obesity and may link adipose tissue dysfunction to further metabolic and cardiovascular complications. Although several adipokines have been identified in terms of their physiological roles, many regulatory circuits remain unclear and translation from experimental studies to clinical applications has yet to occur. Nevertheless, due to their complex metabolic properties, adipokines offer immense potential for their use both as obesity-associated biomarkers and as relevant treatment strategies for overweight, obesity and metabolic comorbidities. To provide an overview of the current clinical use of adipokines, this review summarizes clinical studies investigating the potential of various adipokines with respect to diagnostic and therapeutic treatment strategies for obesity and linked metabolic disorders.

/* */