БЛОГ

Archive for the ‘chemistry’ category: Page 169

Jul 24, 2021

Multi-day iron-air batteries reach commercialization… at one tenth of the cost of lithium

Posted by in categories: chemistry, energy, sustainability

Boston startup Form Energy has secured $200 million Series D funding for the development of what is being called a breakthrough in energy storage. #solarenergy #solarpv #solar


Solar and wind power have variability in their productive hours, as multi-day weather events can impact output. Therefore, multi-day storage that is cost effective is important in grid reliability.

Boston startup Form Energy developed technology to address this need, revealing recently the chemistry behind their iron-air batteries. The company said its iron-air batteries can deliver renewables-sourced electricity for 100 hours at system costs competitive with conventional power plants. At full-scale production, Form Energy said the modules would deliver electricity at tenth the cost of lithium-ion batteries.

Continue reading “Multi-day iron-air batteries reach commercialization… at one tenth of the cost of lithium” »

Jul 24, 2021

Extending Human Lifespans: Using Artificial Intelligence To Find Anti-Aging Chemical Compounds

Posted by in categories: chemistry, life extension, robotics/AI

The University of Surrey has built an artificial intelligence (AI) model that identifies chemical compounds that promote healthy aging — paving the way towards pharmaceutical innovations that extend a person’s lifespan.

In a paper published by Nature Communication’s Scientific Reports, a team of chemists from Surrey built a machine learning model based on the information from the DrugAge database to predict whether a compound can extend the life of Caenorhabditis elegans — a translucent worm that shares a similar metabolism to humans. The worm’s shorter lifespan gave the researchers the opportunity to see the impact of the chemical compounds.

The AI singled out three compounds that have an 80 percent chance of increasing the lifespan of elegans:

Jul 23, 2021

Stanford Device Enables Thousands of Synthetic DNA Enzyme Experiments To Run Simultaneously

Posted by in categories: alien life, chemistry, computing, physics

A new tool that enables thousands of tiny experiments to run simultaneously on a single polymer chip will let scientists study enzymes faster and more comprehensively than ever before.

For much of human history, animals and plants were perceived to follow a different set of rules than rest of the universe. In the 18th and 19th centuries, this culminated in a belief that living organisms were infused by a non-physical energy or “life force” that allowed them to perform remarkable transformations that couldn’t be explained by conventional chemistry or physics alone.

Scientists now understand that these transformations are powered by enzymes – protein molecules comprised of chains of amino acids that act to speed up, or catalyze, the conversion of one kind of molecule (substrates) into another (products). In so doing, they enable reactions such as digestion and fermentation – and all of the chemical events that happen in every one of our cells – that, left alone, would happen extraordinarily slowly.

Jul 23, 2021

Surrey builds AI to find anti-ageing chemical compounds

Posted by in categories: chemistry, life extension, robotics/AI

The University of Surrey has built an artificial intelligence (AI) model that identifies chemical compounds that promote healthy aging—paving the way towards pharmaceutical innovations that extend a person’s lifespan.

Jul 22, 2021

Making clean hydrogen is hard, but researchers just solved a major hurdle

Posted by in categories: chemistry, information science, solar power, sustainability

For decades, researchers around the world have searched for ways to use solar power to generate the key reaction for producing hydrogen as a clean energy source—splitting water molecules to form hydrogen and oxygen. However, such efforts have mostly failed because doing it well was too costly, and trying to do it at a low cost led to poor performance.

Now, researchers from The University of Texas at Austin have found a low-cost way to solve one half of the equation, using sunlight to efficiently split off oxygen molecules from water. The finding, published recently in Nature Communications, represents a step forward toward greater adoption of hydrogen as a key part of our energy infrastructure.

As early as the 1970s, researchers were investigating the possibility of using solar energy to generate hydrogen. But the inability to find materials with the combination of properties needed for a device that can perform the key chemical reactions efficiently has kept it from becoming a mainstream method.

Jul 21, 2021

Brain ‘Noise’ Keeps Nerve Connections Young

Posted by in categories: biotech/medical, chemistry, genetics, life extension, neuroscience

The findings, published in Nature Communications, could have important implications for human health: minis have been found at every type of synapse studied so far, and defects in miniature neurotransmission have been linked to range of neurodevelopmental disorders in children. Figuring out how a reduction in miniature neurotransmission changes the structure of synapses, and how that in turn affects behavior, could help to better understand neurodegenerative disorders and other brain conditions.


Summary: Study reveals how miniature release events help to keep neurons intact and preserve motor neuron function in aging insects.

Source: EPFL

Continue reading “Brain ‘Noise’ Keeps Nerve Connections Young” »

Jul 20, 2021

Chemists Found an Effective Remedy for “Aged” Brain Diseases

Posted by in categories: biotech/medical, chemistry, neuroscience

Summary: Newly synthesized compounds can halt the degradation of neurons in a range of neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease, researchers say.

Source: Ural Federal University

Russian scientists have synthesized chemical compounds that can stop the degeneration of neurons in Alzheimer’s, Parkinson’s, and other severe brain pathologies. These substances can provide a breakthrough in the treatment of neurodegenerative pathologies.

Continue reading “Chemists Found an Effective Remedy for ‘Aged’ Brain Diseases” »

Jul 20, 2021

Engineers develop practical way to make artificial skin

Posted by in categories: chemistry, computing, cyborgs, wearables

Chemical engineer Zhenan Bao and her team of researchers at Stanford have spent nearly two decades trying to develop skin-like integrated circuits that can be stretched, folded, bent and twisted — working all the while — and then snap back without fail, every time. Such circuits presage a day of wearable and implantable products, but one hurdle has always stood in the way.

Namely, “How does one produce a completely new technology in quantities great enough to make commercialization possible?” Bao said. Bao and team think they have a solution. In a new study, the group describes how they have printed stretchable-yet-durable integrated circuits on rubbery, skin-like materials, using the same equipment designed to make solid silicon chips — an accomplishment that could ease the transition to commercialization by switching foundries that today make rigid circuits to producing stretchable ones.


Stanford researchers show how to print dense transistor arrays on skin-like materials to create stretchable circuits that flex with the body to perform applications yet to be imagined.

Continue reading “Engineers develop practical way to make artificial skin” »

Jul 19, 2021

Researchers use high-speed cameras to reveal bubbles popping like blooming flowers

Posted by in categories: chemistry, physics

The oil industry, pharmaceutical companies and bioreactor manufacturers all face one common enemy: bubbles. Bubbles can form during the manufacturing or transport of various liquids, and their formation and rupture can cause significant issues in product quality.

Inspired by these issues and the puzzling physics behind , an international scientific collaboration was born. Stanford University chemical engineer Gerald Fuller along with his Ph.D. students Aadithya Kannan and Vinny Chandran Suja, as well as visiting Ph.D. student Daniele Tammaro from the University of Naples, teamed up to study how different kinds of bubbles pop.

The researchers were particularly interested in bubbles with proteins embedded on their surfaces, which is a common occurrence in the pharmaceutical industry and in bioreactors used for cell culture. In an unanticipated result, the researchers discovered that the protein bubbles they were studying opened up like flowers when popped with a needle. Their findings are detailed in a study published in the journal of the Proceedings of the National Academy of Sciences on July 19.

Jul 19, 2021

Cheap, sustainable, readily available plasma tech could replace rare iridium

Posted by in categories: chemistry, computing, mobile phones, sustainability, transportation

A team led by a researcher from the University of Sydney has developed a low-cost, sustainable, and readily available technology that can dim the screens of electronic devices, anti-reflection automobile mirrors, and smart architectural windows at a fraction of the cost of current technology.

It would replace one of the world’s scarcest—yet highly ubiquitous in use—modern materials: indium. A rare chemical element, that it is widely used in devices such as smartphones and computers, windscreen glass and self-dimming windows.

Although small amounts are used to manufacture smart screens, indium is expensive as it is hard to source; it naturally occurs only in small deposits. Industrial indium is often made as a byproduct of zinc mining, which means a shortage could occur if demand for optoelectronic devices—such as LCDs and touch panels—ramps up.