БЛОГ

Archive for the ‘chemistry’ category: Page 173

Dec 7, 2022

Researchers develop a scaled-up spintronic probabilistic computer

Posted by in categories: chemistry, information science, particle physics, quantum physics, robotics/AI

Researchers at Tohoku University, the University of Messina, and the University of California, Santa Barbara (UCSB) have developed a scaled-up version of a probabilistic computer (p-computer) with stochastic spintronic devices that is suitable for hard computational problems like combinatorial optimization and machine learning.

Moore’s law predicts that computers get faster every two years because of the evolution of semiconductor chips. While this is what has historically happened, the continued evolution is starting to lag. The revolutions in machine learning and means much higher computational ability is required. Quantum computing is one way of meeting these challenges, but significant hurdles to the practical realization of scalable quantum computers remain.

A p-computer harnesses naturally stochastic building blocks called probabilistic bits (p-bits). Unlike bits in traditional computers, p-bits oscillate between states. A p-computer can operate at room-temperature and acts as a domain-specific computer for a wide variety of applications in machine learning and artificial intelligence. Just like quantum computers try to solve inherently quantum problems in , p-computers attempt to tackle probabilistic algorithms, widely used for complicated computational problems in combinatorial optimization and sampling.

Dec 7, 2022

Computing with Chemicals Makes Faster, Leaner AI

Posted by in categories: chemistry, robotics/AI

How far away could an artificial brain be? Perhaps a very long way off still, but a working analogue to the essential element of the brain’s networks, the synapse, appears closer at hand now.

That’s because a device that draws inspiration from batteries now appears surprisingly well suited to run artificial neural networks. Called electrochemical RAM (ECRAM), it is giving traditional transistor-based AI an unexpected run for its money—and is quickly moving toward the head of the pack in the race to develop the perfect artificial synapse. Researchers recently reported a string of advances at this week’s IEEE International Electron Device Meeting (IEDM 2022) and elsewhere, including ECRAM devices that use less energy, hold memory longer, and take up less space.

The artificial neural networks that power today’s machine-learning algorithms are software that models a large collection of electronics-based “neurons,” along with their many connections, or synapses. Instead of representing neural networks in software, researchers think that faster, more energy-efficient AI would result from representing the components, especially the synapses, with real devices. This concept, called analog AI, requires a memory cell that combines a whole slew of difficult-to-obtain properties: it needs to hold a large enough range of analog values, switch between different values reliably and quickly, hold its value for a long time, and be amenable to manufacturing at scale.

Dec 7, 2022

Heat pump sales predicted to see rapid growth

Posted by in categories: chemistry, climatology, finance, government, policy

Government support is needed, however, to help consumers overcome heat pumps’ higher upfront costs relative to alternatives. The costs of purchasing and installing a heat pump can be up to four times as much as those for a gas boiler. Financial incentives for heat pumps are now available in 30 countries.

In the IEA’s most optimistic scenario – in which all governments achieve their energy and climate pledges in full – heat pumps become the main way of decarbonising space and water heating worldwide. The agency estimates that heat pumps have the potential to reduce global carbon dioxide (CO2) emissions by at least 500 million tonnes in 2030 – equal to the annual CO2 emissions of all cars in Europe today. Leading manufacturers report promising signs of momentum and policy support and have announced plans to invest more than US$4 billion in expanding heat pump production and related efforts, mostly in Europe.

Opportunities also exist for heat pumps to provide low-temperature heat in industrial sectors, especially in the paper, food, and chemicals industries. In Europe alone, 15 gigawatts of heat pumps could be installed across 3,000 facilities in these three sectors, which have been hit hard by recent rises in natural gas prices.

Dec 7, 2022

Multiple Realizability (Stanford Encyclopedia of Philosophy)

Posted by in categories: bioengineering, biological, chemistry, neuroscience, physics

In the philosophy of mind, the multiple realizability thesis contends that a single mental kind (property, state, event) can be realized by many distinct physical kinds. A common example is pain. Many philosophers have asserted that a wide variety of physical properties, states, or events, sharing no features in common at that level of description, can all realize the same pain. This thesis served as a premise in the most influential argument against early theories that identified mental states with brain states (psychoneural, or mind-brain identity theories). It also served in early arguments for functionalism. Nonreductive physicalists later adopted this premise and these arguments (usually without alteration) to challenge all varieties of psychophysical reductionism. The argument was even used to challenge the functionalism it initially was offered to support. Reductionists (and other critics) quickly offered a number of responses, initially attacking either the anti-reductionist or anti-identity conclusion from the multiple realizability premise, or advocating accounts of the reduction relation that accommodated multiple realizability. More recently it has become fashionable to attack the multiple realizability premise itself. Most recently the first book-length treatment of multiple realizability and its philosophical import has appeared.

This entry proceeds mostly chronologically, to indicate the historical development of the topic. Its principle focus is on philosophy of mind and cognitive science, but it also indicates the more recent shift in emphasis to concerns in the metaphysics of science more generally. It is worth mentioning at the outset that multiple realizability has been claimed in physics (e.g., Batterman 2000), biochemistry (Tahko forthcoming) and synthetic biology (Koskinen 2019a, b). After more than fifty years of detailed philosophical discussion there still seems to be no end in sight for novel ideas about this persistent concern.

Dec 7, 2022

Bacterial extracellular electron transfer: a powerful route to the green biosynthesis of inorganic nanomaterials for multifunctional applications

Posted by in categories: biotech/medical, chemistry, health, nanotechnology

Two categories of nanofabrication technologies are known as top-down and bottom-up approaches [5]. For the former, nanosized materials are prepared through the rupture of bulk materials to fine particles, and such a process is usually conducted by diverse physical and mechanical techniques like lithography, laser ablation, sputtering, ball milling and arc-discharging [6, 7]. These techniques themselves are simple, and nanosized materials can be produced quickly after relatively short technological process, but expensive specialized equipment and high energy consumption are usually inevitable. Meanwhile, a variety of efficient chemical bottom-up methods, where atoms assemble into nuclei and then form nanoparticles, have been intensively studied to synthesize and modulate nanomaterials with specific shape and size [8].

Indeed, chemical methodologies, including but not limited to, aqueous reaction using chemical reducing agents (e.g. hydrazine hydrate and sodium borohydride), electrochemical deposition, hydrothermal/solvothermal synthesis, sol–gel processing, chemical liquid/vapor deposition, have been developed up to now [5, 6]. These approaches can not only produce diverse nanomaterials with fairly high yields, but also endow fine controllability in tailoring nanostructures and properties of the products. Nevertheless, they have been encountering some serious challenges of harsh reaction conditions (e.g. pH and temperature), potential risks in human health and environment, and low cost-effectiveness. Moreover, there are biosafety concerns on products synthesized chemically using hazardous reagents, which restricts their applications in many areas, particularly in medicines and pharmaceuticals [9].

Impressively, biological methodology is becoming a favourite in nanomaterial synthesis nowadays to address challenges in chemical synthesis. Compared to chemical routes, biosynthesis using natural and biological materials as reducing, stabilizing and capping agents are simple, energy-and cost-effective, mild and environment-friendly, which is termed as “Green Chemistry” [2, 6]. More significantly, the biologically synthesized nanomaterials have much better competitiveness in biocompatibility, compared to those chemically derived counterparts. On the one hand, the biogenic nanomaterials are free from toxic contamination of by-products that are usually involved in chemical synthesis process; on the other hand, the biosynthesis do not need additional stabilizing agents because either the used organisms themselves or their constituents can act as capping and stabilizing agents and the attached biological components in turn form biocompatible envelopes on the resultant nanomaterials, leading to actively interact with biological systems [2]. As one of the most abundant biological resources, some microorganisms have adapted to habitat contaminated with toxic metals, and thus evolved powerful tactics for remediating polluted environment while recycling metal resources [7, 10], and some review articles on the biosynthesis of MNPs using diverse microorganisms including bacteria, yeast, fungi, alga, etc. and their applications have been published in recent years [1, 2, 6, 7, 10].

Dec 6, 2022

X-rays reveal elusive chemistry for better electric vehicle batteries

Posted by in categories: chemistry, energy, nanotechnology, sustainability, transportation

Researchers around the world are on a mission to relieve a bottleneck in the clean energy revolution: batteries. From electric vehicles to renewable grid-scale energy storage, batteries are at the heart of society’s most crucial green innovations—but they need to pack more energy to make these technologies widespread and practical.

Now, a team of scientists led by chemists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Pacific Northwest National Laboratory (PNNL) has unraveled the complex chemical mechanisms of a component that is crucial for boosting energy density: the interphase. Their work published today in Nature Nanotechnology.

Dec 3, 2022

UV and black light tattoos: Everything you need to know

Posted by in categories: chemistry, health

UV tattoos use a fluorescent dye, which means the tattoo only appears under UV light. There is little evidence on whether UV tattoos are safe for human skin.

UV tattoos, also known as black light tattoos, are invisible under regular lighting and only appear under UV light due to the fluorescent compounds within the ink.

There is no regulation over UV tattoos, so there may be some potential health risks, depending on the ink’s chemicals. UV tattoos will also require similar aftercare to regular tattoos.

Dec 3, 2022

Brain mapping in mice may explain why pain makes us lose our appetite

Posted by in categories: chemistry, food, mapping, neuroscience

Examinations using microscopes confirmed that these neurons were active in the mice with chronic pain. When the researchers used chemicals to stop the neuronal activity in this cortex, the mice’s appetites improved.

Similarly, when the researchers used chemicals to activate these neurons in mice that weren’t in pain, the animals ate less, even if they had been deprived of food before the experiment.

This is the first time that researchers have traced the brain mechanisms behind pain-related appetite loss, the researchers wrote.

Dec 3, 2022

Mom’s Dietary Fat Rewires Male and Female Brains Differently

Posted by in categories: chemistry, health, neuroscience, sex

Excess fat triggers immune cells to overeat serotonin in the brain of developing male mice, leading to depression-like behavior. More than half of all women in the United States are overweight or obese when they become pregnant. While being or becoming overweight during pregnancy can have potential health risks for moms, there are also hints that it may tip the scales for their kids to develop psychiatric disorders like autism or depression, which often affects one gender more than the other.

What hasn’t been understood however is how the accumulation of fat tissue in mom might signal through the placenta in a sex-specific way and rearrange the developing offspring’s brain.

To fill this gap, Duke postdoctoral researcher Alexis Ceasrine, Ph.D., and her team in the lab of Duke psychology & neuroscience professor Staci Bilbo, Ph.D., studied pregnant mice on a high-fat diet. In findings appearing November 28 in the journal Nature Metabolism, they found that mom’s high-fat diet triggers immune cells in the developing brains of male but not female mouse pups to overconsume the mood-influencing brain chemical serotonin, leading to depressed-like behavior.

Dec 2, 2022

Shocking decline in human sperm counts

Posted by in category: chemistry

A study in the journal Human Reproduction finds that human sperm counts fell by 62% in the last 50 years, possibly a result of poor diets and a toxic soup of forever chemicals in air and water.