Toggle light / dark theme

Every skin flake, hair follicle, eyelash, and spit drop cast from your body contains instructions written in a chemical code, one that is unique to you.

According to a new study, technology has advanced to the point that it’s now possible to sift scraps of human DNA out of the air, water, or soil and decipher personal details about the individuals who dropped them.

As useful as this might seem, the study’s authors warn society might not be prepared for the consequences.

A novel protocol for quantum computers could reproduce the complex dynamics of quantum materials.

RIKEN researchers have created a hybrid quantum-computational algorithm that can efficiently calculate atomic-level interactions in complex materials. This innovation enables the use of smaller quantum computers or conventional ones to study condensed-matter physics and quantum chemistry, paving the way for new discoveries in these fields.

A quantum-computational algorithm that could be used to efficiently and accurately calculate atomic-level interactions in complex materials has been developed by RIKEN researchers. It has the potential to bring an unprecedented level of understanding to condensed-matter physics and quantum chemistry—an application of quantum computers first proposed by the brilliant physicist Richard Feynman in 1981.

A team of engineers and materials scientists affiliated with multiple institutions in the U.S., has developed a new way to depolymerize plastics using electrified spatiotemporal heating. In their paper, published in the journal Nature, the group describes the new process and its efficiency. Nature has also published a Research Briefing in the same journal issue outlining the work done by the team.

Over the past several years, has become a major concern, both for the environment and for the health of plants and animals, including humans, and scientists are seeking ways to recycle it. Most of the techniques developed thus far involve using chemicals to depolymerize . These efforts are still extremely inefficient, however, with yields between 10% and 25%. In this new effort, the team has found a way to use pulsed electricity to boost the yield to approximately 36%.

The approach involved designing a new kind of with a porous carbon felt bilayer and a pulsed electric heater at the top. In their reactor, plastic bits are melted as they are fed in to the upper chamber and flow as a mass into a lower chamber, where the material is pushed through the felt filter. The plastic then begins to decompose as the . As the molecules that make up the plastic become smaller, their volatility grows until they are expelled from the reactor as a gas, which allows more liquid to be drawn in. Using electricity to heat the plastic allows for oscillating the temperature, allowing simpler depolymerization reactions to take precedence over side reactions, which need additional heating to depolymerize.

DNA writing is an aspect of our industry that I’ve been closely watching for several years because it is a critical component of so many groundbreaking capabilities, from cell and gene therapies to DNA data storage. At the SynBioBeta Conference in 2018, the co-founder of a new startup that was barely more than an idea gave a lightning talk on enzymatic DNA synthesis — and I was so struck by the technology the company was aiming to develop that I listed them as one of four synthetic biology startups to watch in 2019. I watched them, and I wasn’t disappointed.

Ansa Biotechnologies, Inc. — the Emeryville, California-based DNA synthesis startup using enzymes instead of chemicals to write DNA — announced in March the successful de novo synthesis of a 1005-mer, the world’s longest synthetic oligonucleotide, encoding a key part of the AAV vector used for developing gene therapies. And that’s just the beginning. Co-founder Dan Lin-Arlow will be giving another lightning talk at this year’s SynBioBeta Conference in just a few weeks. I caught up with him in the lead up and was truly impressed by what Ansa Biotechnologies has accomplished in just 5 years.

Synthetic DNA is a key enabling technology for engineering biology. For nearly 40 years, synthetic DNA has been produced using phosphoramidite chemistry, which facilitates the sequential addition of new bases to a DNA chain in a simple cyclic reaction. While this process is incredibly efficient and has supported countless innovative breakthroughs (a visit to Twist Bioscience’s website will quickly educate you on exciting advances in drug discovery, infectious disease research, cancer therapeutics, and even agriculture enabled by synthetic DNA) it suffers from two main drawbacks: its reliance on harsh chemicals and its inability to produce long (read: complex) DNA fragments.

Ocean microplastics have become a major source of concern, especially since they are so hard to track down, but researchers found an ingenious solution using satellites.

Ocean plastics have become a major source of concern for evironmental conservationists and public health professionals in recent years, and there hasn’t been a good way to track how these plastics are moving or their concentrations. But now, researchers from the University of Michigan have developed an ingenious way to track the ebb and flow of these microplastics around the world thanks to NASA satellites.


Solarseven/iStock.

Microplastics are the remnant pieces of larger plastics that have disintegrated over time due to chemical and physical processes, and are typically measured as less than 5mm in size. The underlying plastic compounds remain intact even as the plastic fiber or particle gets physically smaller, and plastics do not chemically decompose.

The early detection and treatment of dementia such as Alzheimer’s is still one of the great challenges of modern medicine. It is already known that certain proteins in the cerebrospinal fluid can be used to diagnose Alzheimer’s disease. However, the current detection methods for such biomarkers by means of biochemical tests can only confirm and quantify the presence of such pathological proteins. No conclusions can be drawn about their original morphology of the proteins using biochemical assays, which holds information on disease stages.

However, such information if obtained directly in a label-free manner could allow conclusions to be drawn about the stage of the disease and evaluate the efficiency of a prescribed treatment. A team from the Transport at Nanoscale Interfaces Laboratory at Empa and the Department of Neurology at the Cantonal Hospital in St. Gallen has now used (AFM) to visualize the proteins that are indicative of Alzheimer’s disease under conditions that are as close to reality as possible. The researchers recently published their results in the journal Communications Biology.

With the new study, the researchers add another piece of the puzzle to their insights into Alzheimer’s development and diagnosis.

An unusual quasicrystal has been discovered by a team from the Martin Luther University Halle-Wittenberg (MLU), the University of Sheffield and Xi’an Jiaotong University. It has a dodecagonal honeycomb structure that has never been seen before. Until now, similar quasicrystals were only known to come in a solid—not liquid—form. The team presents its results in the journal Nature Chemistry.

Quasicrystals have a special structure. They have a regular pattern similar to normal crystals, however, in normal crystals, the arrangement of the individual components is repeated over and over at . In the case of quasicrystals, the components do not fit together in such a periodic pattern. This special structure gives them special properties that normal crystals do not have.

The newly discovered consists of dodecagons, which in turn are made up of a mixture of triangular, square and, for the first time, trapezoidal shaped cells. These are generated from the self-assembly of “T-shaped” molecules. “We have discovered a perfectly ordered liquid quasicrystal. Such a material has never been seen before,” says chemist Professor Carsten Tschierske at MLU.

In a result decades in the making, Los Alamos scientists have achieved light amplification with electrically driven devices based on solution-cast semiconductor nanocrystals—tiny specs of semiconductor matter made via chemical synthesis and often called colloidal quantum dots.

This demonstration, reported in the journal Nature, opens the door to a completely new class of electrically pumped lasing devices—highly flexible, solution-processable laser diodes that can be prepared on any crystalline or non-crystalline substrate without the need for sophisticated vacuum-based growth techniques or a highly controlled clean-room environment.

“The capabilities to attain light amplification with electrically driven colloidal have emerged from decades of our previous research into syntheses of nanocrystals, their photophysical properties and optical and electrical design of quantum dot devices,” said Victor Klimov, Laboratory Fellow and leader of the quantum dot research initiative.

😗


Root canal treatment removes the infection and bacteria from the core of a tooth — the pulp chamber. These bacteria are often present within the canals of the teeth. However, proper treatment saves a badly infected natural tooth from needing to be extracted. Sufficient cleaning of the root canals is a key step of RCT. A lack of proper canal debridement can cause bacteria to thrive — a significant cause of RCT failures.

The tooth is washed with antibiotics or other chemicals that kill the bacteria to get rid of the infection. However, some teeth have complex root structures, and conventional ways of cleaning them are not enough to remove all bacteria. That’s one area where dental nanorobots can help. Nanorobots are showing promise in different steps of RCT, even better than traditional ways.

Dental nanorobots, also called nanobots/nanomotors/nano propellers, are designed to reach nooks and crannies within teeth to disinfect even the narrowest and most complex tooth canals during RCT. As the name suggests, nanorobots are microscopic — one-millionth of a millimeter. Dentists need special equipment like electron microscopes to see them. Their tiny size helps them to enter tooth canals and maneuver to depths and through curves not previously accessible.

Physicists at Delft University of Technology have developed a new technology on a microchip by combining two Nobel Prize-winning methods for the first time. The microchip is capable of accurately measuring distances in materials, which could have applications in areas such as underwater measurement and medical imaging.

The new technology, which utilizes sound vibrations instead of light, could be useful for obtaining high-precision position measurements in materials that are opaque. This breakthrough could result in the development of new methods for monitoring the Earth’s climate and human health. The findings have been published in the journal Nature Communications.

<em>Nature Communications</em> is a peer-reviewed, open-access, multidisciplinary, scientific journal published by Nature Portfolio. It covers the natural sciences, including physics, biology, chemistry, medicine, and earth sciences. It began publishing in 2010 and has editorial offices in London, Berlin, New York City, and Shanghai.