БЛОГ

Archive for the ‘chemistry’ category: Page 216

Mar 9, 2021

Key step reached to­ward long-​sought goal of a silicon-​based laser

Posted by in categories: chemistry, computing, quantum physics

When it comes to microelectronics, there is one chemical element like no other: silicon, the workhorse of the transistor technology that drives our information society. The countless electronic devices we use in everyday life are a testament to how today very high volumes of silicon-based components can be produced at very low cost. It seems natural, then, to use silicon also in other areas where the properties of semiconductors—as silicon is one—are exploited technologically, and to explore ways to integrate different functionalities. Of particular interest in this context are diode lasers, such as those employed in barcode scanners or laser pointers, which are typically based on gallium arsenide (GaAs). Unfortunately though, the physical processes that create light in GaAs do not work so well in silicon. It therefore remains an outstanding, and long-standing, goal to find an alternative route to realizing a ‘laser on silicon.’

Writing today in Applied Physics Letters, an international team led by Professors Giacomo Scalari and Jérôme Faist from the Institute for Quantum Electronics present an important step towards such a device. They report electroluminescence—electrical light generation—from a based on silicon-germanium (SiGe), a material that is compatible with standard fabrication processes used for silicon devices. Moreover, the emission they observed is in the terahertz frequency band, which sits between those of microwave electronics and infrared optics, and is of high current interest with a view to a variety of applications.

Mar 8, 2021

Bacteria Reprogrammed to Make Designer Molecule Used in Pharmaceutical Drugs

Posted by in categories: biotech/medical, chemistry, engineering, genetics

Envisioning an animal-free drug supply, scientists have — for the first time — reprogrammed a common bacterium to make a designer polysaccharide molecule used in pharmaceuticals and nutraceuticals. Published on March 22021, in Nature Communications, the researchers modified E. coli to produce chondroitin sulfate, a drug best known as a dietary supplement to treat arthritis that is currently sourced from cow trachea.

Genetically engineered E. coli is used to make a long list of medicinal proteins, but it took years to coax the bacteria into producing even the simplest in this class of linked sugar molecules — called sulfated glycosaminoglycans — that are often used as drugs and nutraceuticals…

“It’s a challenge to engineer E. coli to produce these molecules, and we had to make many changes and balance those changes so that the bacteria will grow well,” said Mattheos Koffas, lead researcher and a professor of chemical and biological engineering at Rensselaer Polytechnic Institute. “But this work shows that it is possible to produce these polysaccharides using E. coli in animal-free fashion, and the procedure can be extended to produce other sulfated glycosaminoglycans.”

Mar 8, 2021

Twistoptics: A New, Efficient Way to Control Optical Nonlinearity

Posted by in categories: biotech/medical, chemistry, cybercrime/malcode, engineering, quantum physics, solar power

Columbia researchers engineer first technique to exploit the tunable symmetry of 2D materials for nonlinear optical applications, including laser, optical spectroscopy, imaging, and metrology systems, as well as next-generation optical quantum information processing and computing.

Nonlinear optics, a study of how light interacts with matter, is critical to many photonic applications, from the green laser pointers we’re all familiar with to intense broadband (white) light sources for quantum photonics that enable optical quantum computing, super-resolution imaging, optical sensing and ranging, and more. Through nonlinear optics, researchers are discovering new ways to use light, from getting a closer look at ultrafast processes in physics, biology, and chemistry to enhancing communication and navigation, solar energy harvesting, medical testing, and cybersecurity.

Columbia Engineering researchers report that they developed a new, efficient way to modulate and enhance an important type of nonlinear optical process: optical second harmonic generation — where two input photons are combined in the material to produce one photon with twice the energy — from hexagonal boron nitride through micromechanical rotation and multilayer stacking. The study was published online on March 32021, by Science Advances.

Mar 7, 2021

Stamp-Sized Patch Can Check Your Sugar, Caffeine, Alcohol, and Blood Pressure Levels

Posted by in categories: biotech/medical, chemistry, health, wearables

Researchers at the University of California San Diego (UCSD) have developed a wearable health monitor that may bring us one step closer to the dream of Star Trek’s famous tricorder.

The monitor, a stretchy skin patch, can do it all: measuring blood pressure and heart rate, your glucose levels, as well as one of alcohol, caffeine, or lactate levels.

According to UCSD’s press release, the patch is the first device to demonstrate measuring multiple biochemical and cardiovascular signals at the same time.

Mar 7, 2021

New Research Reveals That Quantum Physics Causes Mutations in Our DNA

Posted by in categories: biotech/medical, chemistry, computing, quantum physics

An innovative study has confirmed that quantum mechanics plays a role in biological processes and causes mutations in DNA.

Quantum biology is an emerging field of science, established in the 1920s, which looks at whether the subatomic world of quantum mechanics plays a role in living cells. Quantum mechanics is an interdisciplinary field by nature, bringing together nuclear physicists, biochemists and molecular biologists.

In a research paper published by the journal Physical Chemistry Chemical Physics, a team from Surrey’s Leverhulme Quantum Biology Doctoral Training Centre used state-of-the-art computer simulations and quantum mechanical methods to determine the role proton tunneling, a purely quantum phenomenon, plays in spontaneous mutations inside DNA.

Mar 4, 2021

Dr. Ellen de Brabander — SVP, R&D, PepsiCo — The Future Of Food And Beverage Innovation

Posted by in categories: biological, chemistry, education, food, government, health

The Future Of Food And Beverage Innovation And Venturing — Dr. Ellen De Brabander, Ph.D. — Senior Vice President, R&D, PepsiCo


Dr. Ellen de Brabander, is Senior Vice President, Research and Development, at PepsiCo, the American multinational food, snack, and beverage company.

Continue reading “Dr. Ellen de Brabander — SVP, R&D, PepsiCo — The Future Of Food And Beverage Innovation” »

Mar 3, 2021

Breakthrough greatly enhances ultrafast resolution achievable with X-ray free-electron lasers

Posted by in categories: chemistry, materials

A large international team of scientists from various research organizations, including the U.S. Department of Energy’s (DOE) Argonne National Laboratory, has developed a method that dramatically improves the already ultrafast time resolution achievable with X-ray free-electron lasers (XFELs). It could lead to breakthroughs on how to design new materials and more efficient chemical processes.

Mar 2, 2021

Detecting multiple sepsis biomarkers from whole blood – made fast, accurate, and cheap

Posted by in categories: biotech/medical, chemistry, robotics/AI

https://vimeo.com/508986047

The Wyss Institute’s eRapid electrochemical sensor technology now enables sensitive, specific and multiplexed detection of blood biomarkers at low cost with potential for many clinical applications.


Multimedia Available

The Wyss Institute for Biologically Inspired Engineering at Harvard University (http://wyss.harvard.edu) uses Nature’s design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing that are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and formation of new startups. The Wyss Institute creates transformative technological breakthroughs by engaging in high risk research, and crosses disciplinary and institutional barriers, working as an alliance that includes Harvard’s Schools of Medicine, Engineering, Arts & Sciences and Design, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women’s Hospital, Boston Children’s Hospital, Dana–Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, Charité – Universitätsmedizin Berlin, University of Zurich and Massachusetts Institute of Technology.

Continue reading “Detecting multiple sepsis biomarkers from whole blood – made fast, accurate, and cheap” »

Mar 2, 2021

Dr. John S Torday — Lundquist Institute / UCLA — Aging And Disease As A Process Of Reverse Evolution

Posted by in categories: biotech/medical, chemistry, evolution, genetics, information science, life extension, singularity

Dr. John Torday, Ph.D. is an Investigator at The Lundquist Institute of Biomedical Innovation, a Professor of Pediatrics and Obstetrics/Gynecology, and Faculty, Evolutionary Medicine, at the David Geffen School of Medicine at UCLA, and Director of the Perinatal Research Training Program, the Guenther Laboratory for Cell-Molecular Biology, and Faculty in the Division of Neonatology, at Harbor-UCLA Medical Center.

Dr. Torday studies the cellular-molecular development of the lung and other visceral organs, and using the well-established principles of cell-cell communication as the basis for determining the patterns of physiologic development, his laboratory was the first to determine the complete repertoire of lung alveolar morphogenesis. This highly regulated structure offered the opportunity to trace the evolution of the lung from its unicellular origins forward, developmentally and phylogenetically. The lung is an algorithm for understanding the evolution of other physiologic properties, such as in the kidney, skin, liver, gut, and central nervous system. Such basic knowledge of the how and why of physiologic evolution is useful in the effective diagnosis and treatment of disease.

Continue reading “Dr. John S Torday — Lundquist Institute / UCLA — Aging And Disease As A Process Of Reverse Evolution” »

Mar 2, 2021

Toward the development of drugs for aging-related diseases

Posted by in categories: biotech/medical, chemistry, life extension

In the search for ways to effectively combat age-related human disease, the enzyme sirtuin 6 (Sirt6) has recently become a focus of biochemical research. A targeted activation of Sirt6 could prevent or mitigate such diseases, for example some types of cancer. In a paper for the journal Nature Chemical Biology, biochemists from the University of Bayreuth have now shown how the small molecule MDL-801 binds to the enzyme Sirt6 and influences its activity. These findings stand to aid the development of new drugs.