БЛОГ

Archive for the ‘chemistry’ category: Page 244

Aug 21, 2021

Accelerated RNA detection using tandem CRISPR nucleases

Posted by in categories: biotech/medical, chemistry

Deploying two unrelated CRISPR nucleases in tandem, with multiplexed CRISPR RNAs and a chemically stabilized activator, creates a simple, one-step assay that can rapidly detect attomolar concentrations of RNA without needing target amplification.

Aug 20, 2021

Researchers discover hidden SARS-CoV-2 ‘gate’ that opens to allow COVID infection

Posted by in categories: biotech/medical, chemistry, computing

Since the early days of the COVID pandemic, scientists have aggressively pursued the secrets of the mechanisms that allow severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter and infect healthy human cells.

Early in the pandemic, University of California San Diego’s Rommie Amaro, a computational biophysical chemist, helped develop a detailed visualization of the SARS-CoV-2 spike protein that efficiently latches onto our cell receptors.

Now, Amaro and her research colleagues from UC San Diego, University of Pittsburgh, University of Texas at Austin, Columbia University and University of Wisconsin-Milwaukee have discovered how glycans–molecules that make up a sugary residue around the edges of the spike protein–act as infection gateways.

Continue reading “Researchers discover hidden SARS-CoV-2 ‘gate’ that opens to allow COVID infection” »

Aug 20, 2021

Synthetic Biology Approaches for Engineering Next-Generation Adenoviral Gene Therapies

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics, nanotechnology, neuroscience

I am pleased to announce that my lead-author review paper has been published in ACS Nano! If you are interested in learning about the convergence of synthetic biology and adenoviral gene therapy, I encourage you to check out my paper.

If you cannot access the full text, I have also posted a local copy at the following link: https://logancollinsblog.files.wordpress.com/2021/08/synthet…s-2021.pdf.

#ACS #ACSNano #SyntheticBiology #GeneTherapy #Biology #Biotech #Science #Biotechnology #Nanotechnology #Adenovirus #Engineering #Virology

Continue reading “Synthetic Biology Approaches for Engineering Next-Generation Adenoviral Gene Therapies” »

Aug 20, 2021

Researchers reveal new insights on mechanism that could help treat muscle-related diseases

Posted by in categories: biotech/medical, chemistry, life extension, neuroscience

Investigators who previously developed a recipe for turning skin cells into primitive muscle-like cells that can be maintained indefinitely in the lab without losing the potential to become mature muscle have now uncovered how this recipe works and what molecular changes it triggers within cells. The research, which was led by scientists at Massachusetts General Hospital (MGH) and is published in Genes & Development, could allow clinicians to generate patient-matched muscle cells to help treat muscle injuries, aging-related muscle degeneration, or conditions such as muscular dystrophy.

It’s known that expression of a regulatory gene called MyoD is sufficient to directly convert into mature ; however, mature muscle do not divide and self-renew, and therefore they cannot be propagated for clinical purposes. “To address this shortcoming, we developed a system several years ago to convert skin cells into self-renewing muscle stem-like cells we coined induced myogenic progenitor cells, or iMPCs. Our system uses MyoD in combination with three chemicals we previously identified as facilitators of cell plasticity in other contexts,” explains senior author Konrad Hochedlinger, Ph.D., a principal investigator at the Center for Regenerative Medicine at MGH and a professor of medicine at Harvard Medical School.

In this latest study, Hochedlinger and his colleagues uncovered the details behind how this combination converts skin cells into iMPCs. They found that while MyoD expression alone causes skin cells to take on the identity of mature muscle cells, adding the three chemicals causes the skin cells to instead acquire a more primitive stem cell–like state. Importantly, iMPCs are molecularly highly similar to muscle tissue stem cells, and muscle cells derived from iMPCs are more stable and mature than muscle cells produced with MyoD expression alone.

Aug 19, 2021

Exotic property of ‘ambidextrous’ crystals points to new magnetic phenomena

Posted by in categories: biological, chemistry, computing, mathematics, physics

Researchers from Skoltech, KTH Royal Institute of Technology, and Uppsala University have predicted the existence of antichiral ferromagnetism, a nontrivial property of some magnetic crystals that opens the door to a variety of new magnetic phenomena. The paper was published in the journal Physical Review B.

Chirality, or handedness, is an extremely important fundamental property of objects in many fields of physics, mathematics, chemistry and biology; a chiral object cannot be superimposed on its in any way. The simplest chiral objects are human hands, hence the term itself. The opposite of chiral is achiral: a circle or a square are simple achiral objects.

Chirality can be applied to much more complex entities; for instance, competing internal interactions in a can lead to the appearance of periodic magnetic textures in the structure that differ from their mirror images—this is called chiral ferromagnetic ordering. Chiral crystals are widely considered promising candidates for and processing device realization as information can be encoded via their nontrivial magnetic textures.

Aug 17, 2021

Electric cars and batteries: how will the world produce enough?

Posted by in categories: chemistry, government, sustainability, transportation

Battery-and carmakers are already spending billions of dollars on reducing the costs of manufacturing and recycling electric-vehicle (EV) batteries — spurred in part by government incentives and the expectation of forthcoming regulations. National research funders have also founded centres to study better ways to make and recycle batteries. Because it is still less expensive, in most instances, to mine metals than to recycle them, a key goal is to develop processes to recover valuable metals cheaply enough to compete with freshly mined ones. “The biggest talker is money,” says Jeffrey Spangenberger, a chemical engineer at Argonne National Laboratory in Lemont, Illinois, who manages a US federally funded lithium-ion battery-recycling initiative, called ReCell.


Reducing the use of scarce metals — and recycling them — will be key to the world’s transition to electric vehicles.

Aug 15, 2021

Martian Crust Could Sustain Life through Radiation

Posted by in categories: chemistry, computing, satellites

Deep below the ground, radioactive elements disintegrate water molecules, producing ingredients that can fuel subterranean life. This process, known as radiolysis, has sustained bacteria in isolated, water-filled cracks and rock pores on Earth for millions to billions of years. Now a study published in Astrobiology contends that radiolysis could have powered microbial life in the Martian subsurface.

Dust storms, cosmic rays and solar winds ravage the Red Planet’s surface. But belowground, some life might find refuge. “The environment with the best chance of habitability on Mars is the subsurface,” says Jesse Tarnas, a planetary scientist at NASA’s Jet Propulsion Laboratory and the new study’s lead author. Examining the Martian underground could help scientists learn whether life could have survived there—and the best subsurface samples available today are Martian meteorites that have crash-landed on Earth.

Tarnas and his colleagues evaluated the grain sizes, mineral makeup and radioactive element abundance in Martian meteorites and estimated the Martian crust’s porosity using satellite and rover data. They plugged these attributes into a computer model that simulated radiolysis to see how efficiently the process would have generated hydrogen gas and sulfates: chemical ingredients that can power the metabolism of underground bacteria. The researchers report that if water was present, radiolysis in the Martian subsurface could have sustained microbial communities for billions of years—and perhaps still could today.

Aug 15, 2021

NASA Is Returning to Venus, Where It’s 470°C. Will We Find Life When We Get There?

Posted by in categories: alien life, chemistry

NASA has selected two missions, dubbed DAVINCI+ and VERITAS, to study the “lost habitable” world of Venus. Each mission will receive approximately $500 million for development and both are expected to launch between 2,028 and 2030.

It had long been thought there was no life on Venus, due to its extremely high temperatures. But late last year, scientists studying the planet’s atmosphere announced the surprising (and somewhat controversial) discovery of phosphine. On Earth, this chemical is produced primarily by living organisms.

The news sparked renewed interest in Earth’s “twin,” prompting NASA to plan state-of-the-art missions to look more closely at the planetary environment of Venus—which could hint at life-bearing conditions.

Aug 14, 2021

Fullerene Stability

Posted by in category: chemistry

This work proves that stability of C60 is a geometrical property of the thermodynamics of the system: a significant methodological advance since a detailed treatment of the energetics may be avoidable. This approach may be fruitful, not only for fullerenes but also for general problems of molecular stability and in other applications of conformational chemistry. For the non-chiral C60, C384, and the weakly-chiral C28, C76 and C380 (of these, C380 and C384 are classed as “unspirallable”), Schlegel projections are used to show that these fullerenes can all be represented by pairs of spirals counter-propagating in anti-parallel (C2) symmetry. For C60, the high symmetry is used to construct an analytical approximation for the spherical double-spirals, shown mathematically to be Maximum Entropy (MaxEnt) using the formalism of Quantitative Geometrical Thermodynamics (QGT). Therefore C60 is necessarily stable. This MaxEnt stability criterion is general, depending only on the geometry and not the kinematics of the system. The sense and degree of chirality for C76 and C380 is also quantified using a Shannon entropy-based fragmentation metric.


Click or tap to learn more.

Aug 14, 2021

Laser mining – the light at the end of the tunnel?

Posted by in categories: chemistry, engineering, government

Laser mining would allow for a no explosive option and not need huge machines increasing output as well. Also lasers could make more precise cuts rather than blades which would never get dull.


The application of the “Graduated Optical Colimator” (GOC) for the mining industry consists of a one-kilowatt optical power fiber laser to selectively spall igneous geological formations containing narrow veins of precious metals.

Continue reading “Laser mining – the light at the end of the tunnel?” »