Toggle light / dark theme

Canadian refinery to reuse 100% of water with GE’s wastewater treatment technology

face_with_colon_three year 2024.


GE today announced that Federated Co-Operatives Limited’s Co-op Refinery Complex in Regina, Saskatchewan, Canada, is installing GE’s advanced water recycling technology for a wastewater improvement project that will enable the refinery to clean100 percent of its wastewater on-site. Once fully operationally, the Co-op Refinery Complex will be the only refinery in North America to recycle all of its wastewater for steam production, which is used for heating, hydrogen production, to power equipment and for cooling towers.

“Water is a precious resource and our wastewater improvement project allows us to be efficient and sustainable by recovering every drop of water. With GE’s technology, the Co-op Refinery Complex will clean and recycle all of its wastewater in a socially responsible and environmentally sound way to conserve water for Regina and the entire province of Saskatchewan,” said Gil Le Dressay, vice president, refinery operations, Federated Co-Operatives Limited.

Several years ago the refinery expanded its operations to produce 30,000 more barrels of oil per day (BPD) taking it from 100,000 BPD to a 130,000-BPD facility, which increased its water usage. The refinery’s current water source is a blend of well water and city water, and restrictions on water use mandated that the Co-op Refinery Complex had to find a new source of water. GE offered a solution combining ZeeWeed* membrane bioreactor (MBR) technology and a high-efficiency reverse osmosis (HERO system to recycle and reuse 2 million gallons of wastewater a day. In addition to the water reuse solution, GE provides the refinery with wastewater specialty chemicals and monitoring solutions to provide system optimization.

Harmful algae blooms have secret to success over other algaes—manipulating its environment

An alga that threatens freshwater ecosystems and is toxic to vertebrates has a sneaky way of ensuring its success: It suppresses the growth of algal competitors by releasing chemicals that deprive them of a vital vitamin.

The finding was reported in a new study from Cornell University, describing how the cyanobacteria Microcystis aeruginosa manipulates its environment to give itself advantages to take over the water column, leading to and mats in lakes during hot summers.

“Microcystis seems to be able to dominate more and more in the changing climate,” said Beth Ahner, professor in the Department of Biological and Environmental Engineering and corresponding author of the paper.

New liquid can simplify hydrogen transportation and storage

Researchers at EPFL and Kyoto University have created a stable hydrogen-rich liquid formed by mixing two simple chemicals. This breakthrough could make hydrogen storage easier, safer, and more efficient at room temperature.

Hydrogen can be the clean fuel of the future, but getting it from the lab to everyday life isn’t simple. Most hydrogen-rich materials are solids at , or they only become liquids under like high pressure or freezing temperatures.

Even materials such as , a solid, hydrogen-rich compound that can store a lot of hydrogen, are difficult because they release hydrogen only when heated, often producing unwanted byproducts.

Maxwell–Boltzmann distribution generalized to real gases

The Maxwell–Boltzmann distribution describes the probability distribution of molecular speeds in a sample of an ideal gas. Introduced over 150 years ago, it is based on the work of Scottish physicist and mathematician James Clerk Maxwell (1831–1879) and Austrian mathematician and theoretical physicist Ludwig Boltzmann (1844–1906).

Today, the distribution and its implications are commonly taught to undergraduate students in chemistry and physics, particularly in introductory courses on or statistical mechanics.

In a recent theoretical paper, I introduced a novel formula that extends this well-known distribution to real gases.

This AI-powered lab runs itself—and discovers new materials 10x faster

A new leap in lab automation is shaking up how scientists discover materials. By switching from slow, traditional methods to real-time, dynamic chemical experiments, researchers have created a self-driving lab that collects 10 times more data, drastically accelerating progress. This new system not only saves time and resources but also paves the way for faster breakthroughs in clean energy, electronics, and sustainability—bringing us closer to a future where lab discoveries happen in days, not years.

“This Tongue Outsmarts a Sommelier”: New AI Graphene Sensor Identifies Flavors With 98% Accuracy Faster Than Human Taste Buds

IN A NUTSHELL 🍽️ Scientists have developed an AI-powered graphene tongue that detects flavors with near-human precision. 🧠 The system uses machine learning to interpret chemical signals and identify flavor profiles effectively. ⚡ The integration of sensing and computing in a single device allows for faster, more efficient taste data interpretation. 🔬 Future applications could

Scientists Create the Impossible: New Compound Challenges Fundamental Principle of Chemistry

Once thought unlikely, this new finding in coordination chemistry could lead to promising advances in catalysis and materials science.

For more than 100 years, the widely accepted 18-electron rule has been a foundational guideline in organometallic chemistry. Now, researchers at the Okinawa Institute of Science and Technology (OIST) have synthesized a new organometallic compound that challenges this principle. They developed a stable 20-electron version of ferrocene, an iron-based metal-organic complex, which could open new directions in chemical research.

“For many transition metal complexes, they are most stable when surrounded by 18 formal valence electrons. This is a chemical rule of thumb on which many key discoveries in catalysis and materials science are based,” said Dr. Satoshi Takebayashi, lead author of the paper published in Nature Communications.

New AI tool deciphers mysteries of nanoparticle motion in liquid environments

Nanoparticles—the tiniest building blocks of our world—are constantly in motion, bouncing, shifting, and drifting in unpredictable paths shaped by invisible forces and random environmental fluctuations.

Better understanding their movements is key to developing better medicines, materials, and sensors. But observing and interpreting their motion at the atomic scale has presented scientists with major challenges.

Researchers in Georgia Tech’s School of Chemical and Biomolecular Engineering (ChBE) have developed an (AI) model that learns the underlying physics governing those movements.

/* */