Toggle light / dark theme

One atom, endless power: Scientists create a shape-shifting catalyst for green chemistry

A team in Milan has developed a first-of-its-kind single-atom catalyst that acts like a molecular switch, enabling cleaner, more adaptable chemical reactions. Stable, recyclable, and eco-friendly, it marks a major step toward programmable sustainable chemistry.

Mitsui Works With Quantinuum and QSimulate to Launch Quantum-Integrated Chemistry Platform

Mitsui & Co. has formally launched a new quantum-enabled chemistry platform, QIDO, in collaboration with U.S.-based Quantinuum and QSimulate. The system, designed to accelerate the discovery of new materials and pharmaceuticals, blends classical and quantum computing resources to streamline complex chemical calculation, according to a story in Nikkei and a Quantinuum blog post.

Quantum computers hold promise for modeling chemical reactions beyond the reach of traditional supercomputers. But fully fault-tolerant systems remain years away, leaving companies searching for ways to extract value from today’s noisy, early-stage machines. QIDO, short for Quantum-Integrated Discovery Orchestrator, attempts to bridge that gap.

The platform runs most computations on powerful classical hardware while sending only the most computationally expensive steps — such as the modeling of strongly correlated electrons — to a quantum computer. This hybrid workflow allows companies to perform higher-precision chemical simulations today, without waiting for fully mature quantum systems, Nikkei reports.

Using nature to fight liver cancer

You may not be aware that most of the medicines that have been approved for treatment are rooted in nature.

For example, the bark of willow trees has been called nature’s aspirin because it contains a chemical called salicin. The human body converts salicin into salicylic acid, which relieves pain and fights fevers.

New research by William Chain, associate professor in the University of Delaware’s Department of Chemistry and Biochemistry, and his lab, uses a molecule found in a tropical fruit to offer hope in the fight against liver-related cancers, one of the world’s top causes of cancer deaths.


Chemistry breakthrough provides pathway to low cost treatments.

Sunlight-powered catalyst sets new standard for hydrogen peroxide production efficiency

Hydrogen peroxide (H2O2) packs so much chemical energy into a small space that it is powerful enough to fuel rockets. But this same ability to concentrate energy also makes hydrogen peroxide useful for more earthly energy applications, such as powering fuel cells. It also holds promise as a green and sustainable energy source: when hydrogen peroxide releases its stored energy, the main byproduct is simply water.

Scientists discover new phenomenon in chiral symmetry breaking

Researchers at The University of Osaka have discovered a new type of chiral symmetry breaking (CSB) in an organic crystalline compound.

This phenomenon, involving a solid-state structural transition from an achiral to a chiral crystal, represents a significant advance in our understanding of chirality and offers a simplified model to study the origin of homochirality. This transformation also activates circularly polarized luminescence, enabling new optical materials with tunable light properties.

The work has been published in Chemical Science.

3D-printed gyroidal solid oxide cells offer lighter, more compact energy solutions

Over the past decades, energy engineers have been developing a wide range of new technologies that could power electronic devices, robots and electric vehicles more efficiently and reliably. These include solid oxide cells (SOCs), electrochemical devices that can operate in two different modes, as fuel cells or as electrolyzers.

A new model predicts how molecules will dissolve in different solvents

Using machine learning, MIT chemical engineers created a computational model that can predict how well a given molecule will dissolve in an organic solvent. This type of prediction could make it much easier to develop new ways to produce pharmaceuticals and other useful molecules.

Generative AI models build new antibiotics starting from a single atom

Researchers have tapped into the power of generative artificial intelligence to aid them in the fight against one of humanity’s most pernicious foes: antibiotic-resistant bacteria. | Researchers have tapped into the power of generative artificial intelligence to aid them in the fight against one of humanity’s most pernicious foes: antibiotic-resistant bacteria. Using a model trained on a library of about 40,000 chemicals, scientists were able to build never-before-seen antibiotics that killed two of the most notorious multidrug-resistant bacteria on earth.

Engineers Take a Closer Look at How a Plant Virus Primes the Immune System to Fight Cancer

A virus that typically infects black-eyed peas is showing great promise as a low-cost, potent cancer immunotherapy—and researchers are uncovering why.

In a study published in Cell Biomaterials, a team led by chemical and nano engineers at the University of California San Diego took a closer look at how the cowpea mosaic virus (CPMV), unlike other plant viruses, is uniquely effective at activating the body’s immune system to recognize and attack cancer cells.

In preclinical studies, CPMV has demonstrated potent anti-tumor effects in multiple mouse models, as well as in canine cancer patients. When injected directly into tumors, CPMV therapy recruits innate immune cells—such as neutrophils, macrophages and natural killer cells—into the tumor microenvironment to destroy cancer cells. Meanwhile, it activates B cells and T cells to establish systemic, long-lasting anti-tumor memory. This immune reawakening not only helps clear the targeted tumor but also primes the immune system to hunt down metastatic tumors elsewhere in the body.

Challenging a Century-Old Belief: Scientists Rewrite the Rules of Light-Driven Chemistry

Researchers have uncovered a new mechanism in photochemistry showing that a molecule’s microenvironment can strongly influence how it reacts to light. A global team of scientists, led by researchers at QUT, is overturning a long-standing belief in photochemistry with findings that could influence

/* */