Toggle light / dark theme

Water’s enigmatic surface: X-ray snapshots reveal atoms and molecules at work

Water is all around us, yet its surface layer—home to chemical reactions that shape life on Earth—is surprisingly hard to study. Experiments at SLAC’s X-ray laser are bringing it into focus.

Two-thirds of Earth’s surface is covered in water, most of it in oceans so deep and vast that only one-fifth of their total volume has been explored. Surprisingly, though, the most accessible part of this watery realm—the water’s surface, exposed on wave tops, raindrops and ponds full of skittering water striders—is one of the hardest to get to know.

Just a few layers of atoms thick, the surface plays an outsized role in the chemistry that makes our world what it is—from the formation of clouds and the recycling of water through rainfall to the ocean’s absorption of carbon dioxide from the atmosphere.

Quantum calculations expose hidden chemistry of ice

When ultraviolet light hits ice—whether in Earth’s polar regions or on distant planets—it triggers a cascade of chemical reactions that have puzzled scientists for decades.

Now, researchers at the University of Chicago Pritzker School of Molecular Engineering (UChicago PME) and collaborators at the Abdus Salam International Center for Theoretical Physics (ICTP) have used quantum mechanical simulations to reveal how tiny imperfections in ice’s crystal structure dramatically alter how ice absorbs and emits light. The findings, published in Proceedings of the National Academy of Sciences, pave the way for scientists to better understand what happens at a sub-atomic scale when ice melts, which has implications including improving predictions of the release of greenhouse gases from thawing permafrost.

“No one has been able to model what happens when UV light hits ice with this level of accuracy before,” said Giulia Galli, Liew Family Professor of Molecular Engineering and one of the senior authors of the new work. “Our paper provides an important starting point to understand the interaction of light with ice.”

Two-step flash Joule heating method recovers lithium‑ion battery materials quickly and cleanly

A research team at Rice University led by James Tour has developed a two-step flash Joule heating-chlorination and oxidation (FJH-ClO) process that rapidly separates lithium and transition metals from spent lithium-ion batteries. The method provides an acid-free, energy-saving alternative to conventional recycling techniques, a breakthrough that aligns with the surging global demand for batteries used in electric vehicles and portable electronics.

Published in Advanced Materials, this research could transform the recovery of critical battery materials. Traditional recycling methods are often energy intensive, generate wastewater and frequently require harsh chemicals. In contrast, the FJH-ClO process achieves high yields and purity of lithium, cobalt and graphite while reducing energy consumption, chemical usage and costs.

“We designed the FJH-ClO process to challenge the notion that battery recycling must rely on acid leaching,” said Tour, the T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering. “FJH-ClO is a fast, precise way to extract valuable materials without damaging them or harming the environment.”

Year-round edamame: Hydroponic LED plant factories redefine sustainable cultivation

Artificial light-type plant factories are an emerging agricultural innovation that enables crops to be grown year-round in precisely controlled environments. By adjusting factors such as light, temperature, humidity, carbon dioxide concentration, and nutrient delivery, these facilities can produce stable yields independent of climate conditions. They offer a promising way to reduce pesticide use and minimize the impacts of climate change.

However, legumes like edamame have long been considered difficult to cultivate in such settings because of their long growth periods, short storage periods, complex flowering, and pod-setting processes.

Against this backdrop, the research group, led by Professor Toshio Sano from the Faculty of Bioscience and Applied Chemistry, Hosei University, Japan, and Associate Professor Wataru Yamori of the Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan, had previously gained attention for successfully cultivating tomatoes under LED lighting in a plant factory.

Commercially viable biomanufacturing: Designer yeast turns sugar into lucrative chemical 3-HP

Using a tiny, acid-tolerant yeast, scientists have demonstrated a cost-effective way to make disposable diapers, microplastics, and acrylic paint more sustainable through biomanufacturing.

A key ingredient in those everyday products is acrylic acid, an important industrial chemical that gives disposable diapers their absorbency, makes water-based paints and sealants more weather-proof, improves stain resistance in fabric, and enhances fertilizers and soil treatments.

Acrylic acid is converted from a precursor called 3-hydroxypropanoic acid, or 3-HP, which is made almost exclusively from petroleum through chemical synthesis—an energy-intensive process. But 3-HP can also be produced from renewable plant material by using engineered microbes to ferment plant sugars into this high-value chemical. Until now, however, the biomanufacturing process has not proven profitable.

Advances in thin-film electrolytes push solid oxide fuel cells forward

Under the threat of climate change and geopolitical tensions related to fossil fuels, the world faces an urgent need to find sustainable and renewable energy solutions. While wind, solar, and hydroelectric power are key renewable energy sources, their output strongly depends on environmental conditions, meaning they are unable to provide a stable electricity supply for modern grids.

Solid oxide fuel cells (SOFCs), on the other hand, represent a promising alternative; these devices produce electricity on demand directly from clean electrochemical reactions involving hydrogen and oxygen.

However, existing SOFC designs still face technical limitations that hinder their widespread adoption for power generation. SOFCs typically rely on bulk ceramic electrolytes and require high operating temperatures, ranging from 600–1,000 °C. This excessive heat not only forces manufacturers to use expensive, high-performance materials, but also leads to earlier component degradation, limiting the cell’s service life and driving up costs.

Radiotracers could improve choice of bladder cancer therapies

A research team at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) has developed a radiopharmaceutical molecule marker that can visualize tumors that carry the cell surface protein Nectin-4. This primarily occurs in the body in cases of urothelial carcinoma, a common form of bladder cancer.

In pre-clinical trials, the drug candidate, NECT-224, proved stable and was successfully used in humans for the first time. As the team has now reported in the Journal of Medicinal Chemistry, in the future, it could be used to better identify patients who would benefit from Nectin-4-targeted therapies.

Many modern cancer drugs only work when the target structure to which they are supposed to bind is also present on the tumor cells. In the case of urothelial carcinoma, the cell surface protein Nectin-4 lends itself to this purpose. It serves as a “door sign” for antibody-coupled agents that are able to eliminate tumor cells in a targeted fashion. But not every tumor produces the same amount of Nectin-4.

OLED lighting: Corrugated panel design extends longevity and efficiency

The organic light emitting diodes—known widely as OLEDs—that create vibrant smartphone displays could illuminate rooms, but current designs burn out too quickly at the high brightness needed for room lighting. A new approach overcomes this tradeoff by building OLEDs on a corrugated surface, packing more emitting material into a given lighting panel area to produce the same amount of light while operating the OLED itself at lower brightness.

This corrugated panel strategy increased device lifespan by a factor of 2.7 compared to flat panels operated at the same current, according to a study led by the University of Michigan in collaboration with OLEDWorks and The Pennsylvania State University.

“While the problems we solved along the way were daunting, in the end the new device performed tremendously better than predecessors. It’s rewarding to see our ideas point towards a valid path to improve the efficiency and lifetime of OLED lighting,” said Max Shtein, a professor of materials science and engineering and chemical engineering at U-M and co-corresponding author of the study published in Nature Communications.

Entanglement enhances the speed of quantum simulations, transforming long-standing obstacles into a powerful advantage

Researchers from the Faculty of Engineering at The University of Hong Kong (HKU) have made a significant discovery regarding quantum entanglement. This phenomenon, which has long been viewed as a significant obstacle in classical quantum simulations, actually enhances the speed of quantum simulations. The findings are published in Nature Physics in an article titled “Entanglement accelerates quantum simulation.”

Simulating the dynamic evolution of matter is fundamental to understanding the universe, yet it remains one of the most challenging tasks in physics and chemistry. For decades, “entanglement”—the complex correlation between quantum particles—has been viewed as a formidable barrier. In classical computing, high entanglement makes simulations exponentially harder to perform, often acting as a bottleneck for studying complex quantum systems.

Led by Professor Qi Zhao from the School of Computing and Data Science at HKU, the research team collaborated with Professor You Zhou from Fudan University and Professor Andrew M. Childs from the University of Maryland, and overturned this long-held belief. They discovered that while entanglement hinders classical computers, it actually accelerates quantum simulations, turning a former obstacle into a powerful resource.

Sensor lights up to reveal scopolamine, a common substance used for sexual assault

A team from the Universitat Politècnica de València (UPV) has led the development of a new sensor capable of quickly and easily detecting scopolamine, one of the substances most commonly used in crimes of chemical submission, especially in sexual assaults. The sensor detects the presence of this drug in less than five minutes with high sensitivity. The research is published in the journal Angewandte Chemie International Edition.

“Scopolamine is a substance that is difficult to detect using conventional methods, especially when found in drinks. For this reason, our group from the IDM Institute at the UPV set out to develop new, simple tools that can immediately alert us to its presence,” says Vicente Martí Centelles, a researcher at the Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) at the UPV.

/* */