БЛОГ

Archive for the ‘chemistry’ category: Page 52

Jun 14, 2023

Key building block for life found at Saturn’s moon Enceladus

Posted by in categories: alien life, chemistry

The search for extraterrestrial life in our solar system just got more exciting. A team of scientists including Southwest Research Institute’s Dr. Christopher Glein has discovered new evidence that the subsurface ocean of Saturn’s moon Enceladus contains a key building block for life. The team directly detected phosphorus in the form of phosphates originating from the moon’s ice-covered global ocean using data from NASA’s Cassini mission. Cassini explored Saturn and its system of rings and moons for over 13 years.

“In 2020 (published in 2022), we used geochemical modeling to predict that phosphorus should be abundant in Enceladus’ ,” said Glein, a leading expert in extraterrestrial oceanography. He is a co-author of a paper in the journal Nature describing this research. “Now, we have found abundant phosphorus in plume ice samples spraying out of the subsurface ocean.”

The Cassini spacecraft discovered Enceladus’ subsurface liquid water and analyzed samples in a plume of ice grains and gases erupting into space from cracks in the moon’s icy surface. Analysis of a class of salt-rich ice grains by Cassini’s Cosmic Dust Analyzer showed the presence of sodium phosphates. The team’s observational results, together with laboratory analogue experiments, suggest that phosphorus is readily available in Enceladus’ ocean as phosphates.

Jun 14, 2023

Scientists Predict Never-Before-Seen Crystal Structures With Unexpected Chemistry

Posted by in categories: chemistry, information science, particle physics

Ultra-high pressure can have strange effects in physics and chemistry, and in a new study, high-pressure modeling has led to the prediction of four new compounds: compounds that don’t form in normal ways, have crystal structures we’ve never seen before, and can even act as superconductors in certain temperatures.

Those compounds are Li14 Cs, Li8Cs, Li7Cs, and Li6Cs, and they’re all formed from lithium (Li) and cesium (Cs) – though not in a conventional way. All four are superconductors, which means electricity can flow through them without resistance or energy loss.

The scientists behind the study used a special crystal structure prediction algorithm called USPEX (Universal Structure Predictor: Evolutionary Xtallography) to find these new compounds. It’s known as an evolutionary algorithm, using a range of methods to figure out the probability of how atoms will link together.

Jun 14, 2023

Researchers design a fabric that actively regulates temperature with the flip of a switch

Posted by in categories: chemistry, mobile phones, wearables

A study, published in PNAS Nexus, describes a fabric that can be modulated between two different states to stabilize radiative heat loss and keep the wearer comfortable across a range of temperatures.

Po-Chun Hsu, Jie Yin, and colleagues designed a made of a layered semi-solid electrochemical cell deployed on nylon cut in a kirigami pattern to allow it to stretch and move with the wearer’s body. Modern clothes are made with a variety of insulating or breathable fabrics, but each fabric offers only one thermal mode, determined by the fabric’s emissivity: the rate at which it emits .

The in the fabric can be electrically switched between two states—a transmissive dielectric state and a lossy metallic state—each with different emissivity. The fabric can thus keep the wearer comfortable by adjusting how much body heat is retained and how much is radiated away. A user would feel the same skin temperature whether the external temperature was 22.0°C (71.6°F) or 17.1°C (62.8°F). The authors call this fabric a “wearable variable-emittance device,” or WeaVE, and have configured it to be controlled with a .

Jun 13, 2023

Black phosphorus–based human–machine communication interface: A breakthrough in assistive technology

Posted by in categories: chemistry, cyborgs

Researchers at the University of Chemistry and Technology in Prague have made progress in the field of assistive technology with the development of a novel auditory human–machine interface using black phosphorus–based tactile sensors. Research led by Prof. Martin Pumera and Dr. Jan Vyskočil has the potential to revolutionize communication for visually or speech-disabled individuals by providing an intuitive and efficient means of conveying information.

Assistive technology that utilizes has traditionally been employed by individuals with or speech and language difficulties. In this study, the focus was on creating an auditory that utilizes audio as a platform for communication between disabled users and society. The researchers developed a piezoresistive tactile sensor using a composite of black phosphorus and polyaniline (BP@PANI) through a simple chemical oxidative polymerization process on cotton fabric.

The unique structure and superior electrical properties of black phosphorus, combined with the large surface area of the fabric, enabled the BP@PANI-based tactile sensor to exhibit exceptional sensitivity, low-pressure sensitivity, reasonable response time, and excellent cycle stability. To demonstrate the real-world application, a was created, incorporating six BP@PANI corresponding to braille characters. This device can convert pressed text into audio, aiding visually or speech-disabled individuals in reading and typing. It offers a promising solution for improving communication and accessibility for this demographic.

Jun 13, 2023

Dr Brandon Berry, PhD — Exploring Mitochondrial Bioenergetics, Optogenetics, Human Health And Aging

Posted by in categories: biotech/medical, chemistry, genetics, life extension

Exploring Mitochondrial Bioenergetics, Optogenetics, Human Health And Aging — Dr. Brandon Berry, Ph.D., University of Washington.


Dr. Brandon Berry, Ph.D. (https://halo.dlmp.uw.edu/people/brandon-berry/) is a postdoctoral researcher in the Kaeberlein Laboratory at University of Washington where his research focuses on how aging and metabolism are linked.

Continue reading “Dr Brandon Berry, PhD — Exploring Mitochondrial Bioenergetics, Optogenetics, Human Health And Aging” »

Jun 13, 2023

New material transforms light, creating new possibilities for sensors

Posted by in categories: biotech/medical, chemistry, nanotechnology, solar power

A group of scientists and engineers that includes researchers from The University of Texas at Austin have created a new class of materials that can absorb low energy light and transform it into higher energy light. The new material is composed of ultra-small silicon nanoparticles and organic molecules closely related to ones utilized in OLED TVs. This new composite efficiently moves electrons between its organic and inorganic components, with applications for more efficient solar panels, more accurate medical imaging and better night vision goggles.

The material is described in a new paper in Nature Chemistry.

“This process gives us a whole new way of designing materials,” said Sean Roberts, an associate professor of chemistry at UT Austin. “It allows us to take two extremely different substances, silicon and , and bond them strongly enough to create not just a mixture, but an entirely new hybrid material with properties that are completely distinct from each of the two components.”

Jun 12, 2023

Engineered white blood cells can eliminate cancer, shows study

Posted by in categories: biotech/medical, chemistry, engineering, neuroscience

Cancer remains one of the leading causes of death in the US at over 600,000 deaths per year. Cancers that form solid tumors such as in the breast, brain, or skin are particularly hard to treat. Surgery is typically the first line of defense for patients fighting solid tumors. But surgery may not remove all , and leftover cells can mutate and spread throughout the body. A more targeted and wholistic treatment could replace the blunt approach of surgery with one that eliminates cancer from the inside using our own cells.

Dennis Discher, Robert D. Bent Professor of Chemical and Biomolecular Engineering, and postdoctoral fellow Larry Dooling provide a new approach in targeted therapies for solid tumor cancers in their study, published in Nature Biomedical Engineering. Their therapy not only eliminates cancerous cells, but teaches the to recognize and kill them in the future.

Jun 12, 2023

How car tires are retreaded

Posted by in categories: chemistry, transportation

The disposal of tires represents a significant burden on the environment, so companies like Marangoni developed methods to recycle and reuse old tires. Watch how retreading machines make old tires usable again.

Following is a transcript of the video.

Narrator: When your tire wears out, you take it to a shop where it’s tossed out for a new one. The discarded tire is typically recycled — ground up and chemically broken down to use as a building material in streets or parks. Some companies hope to recycle differently. For years, companies like Marangoni have been saving tire casings, replacing the old tread (the rubber that touches the ground) with new tread in a process called “retreading.” These tires are not only easier to make — they typically take 20% of the energy of creating a new tire — they perform well too, standing up to the same tests that one-use tires are subjected to.

Jun 10, 2023

Confinement effects of carbon nanotubes on polyoxometalate clusters enhance electrochemical energy storage

Posted by in categories: chemistry, energy, nanotechnology

Carbon nanotubes (CNTs) are considered ideal electrochemical energy storage materials due to their high electrical conductivity, large theoretical surface area, and good chemical stability.

However, CNTs tend to aggregate due to strong van der Waals forces, which reduces their electrochemically active area. This problem is even worse for (SWNTs) due to their high length-to-diameter ratio.

Recently, a joint research team led by Dr. Wang Xiao from the Shenzhen Institute of Advanced Technology (SIAT) of the Chinese Academy of Sciences, Dr. Zhu Sheng from Shanxi University, and Prof. Li Yan from Peking University has encapsulated polyoxometalate guest molecules within SWNTs (with a diameter of approximately 1.4 nm) to enhance the electrochemical energy storage of CNTs.

Jun 9, 2023

Muscle contractions release chemical signals that promote brain network development

Posted by in categories: biotech/medical, chemistry, life extension, neuroscience

Chemical signals from contracting muscles can influence the growth of brain networks, according to new research published in Neuroscience. The study highlights the importance of physical activity to mental health, and the findings could also help contribute to the development of more effective treatments for cognitive disorders such as Alzheimer’s disease.

Previous studies had shown that exercise has significant benefits for cognitive health, even when initiated at late stages in life. Exercise has been associated with long-term changes in the hippocampus, a brain region crucial for learning and memory, including increased neurogenesis, synaptogenesis, and enlarged volume.

However, the specific mechanisms through which exercise produces these changes in the hippocampus were not well understood. By uncovering these mechanisms, the authors behind the new study aim to develop exercise-based treatments for cognitive pathologies that affect the hippocampus, such as Alzheimer’s disease, stress, depression, anxiety, and normal aging.

Page 52 of 271First4950515253545556Last