БЛОГ

Archive for the ‘chemistry’ category: Page 54

Jun 4, 2023

An organic electrochemical transistor that serves as a sensor and processor

Posted by in categories: chemistry, robotics/AI

In recent years, electronics engineers have been trying to develop new brain-inspired hardware that can run artificial intelligence (AI) models more efficiently. While most existing hardware is specialized in either sensing, processing or storing data, some teams have been exploring the possibility of combining these three functionalities in a single device.

Researchers at Xi’an Jiaotong University, the University of Hong Kong and Xi’an University of Science and Technology introduced a new organic transistor that can act as a sensor and processor. This transistor, introduced in a paper published in Nature Electronics, is based on a vertical traverse architecture and a crystalline-amorphous channel that can be selectively doped by ions, allowing it to switch between two reconfigurable modes.

“Conventional (AI) hardware uses separate systems for data sensing, processing, and ,” Prof. Wei Ma and Prof. Zhongrui Wang, two of the researchers who carried out the study, told Tech Xplore.

Jun 3, 2023

Discovery challenges 30-year-old dogma in associative polymers research

Posted by in categories: bioengineering, chemistry

A University of Virginia-led study about a class of materials called associative polymers appears to challenge a long-held understanding of how the materials, which have unique self-healing and flow properties, function at the molecular level.

Liheng Cai, an assistant professor of materials science and engineering and chemical engineering at UVA, who led the study, said the new discovery has important implications for the countless ways these materials are used every day, from engineering recyclable plastics to human tissue engineering to controlling the consistency of paint so it doesn’t drip.

The discovery, which has been published in the journal Physical Review Letters, was enabled by new associative polymers developed in Cai’s lab at the UVA School of Engineering and Applied Science by his postdoctoral researcher Shifeng Nian and Ph.D. student Myoeum Kim. The breakthrough evolved from a theory Cai had co-developed before arriving at UVA in 2018.

Jun 3, 2023

AI Creates Killer Drug

Posted by in categories: biotech/medical, chemistry, information science, robotics/AI

Researchers in Canada and the United States have used deep learning to derive an antibiotic that can attack a resistant microbe, acinetobacter baumannii, which can infect wounds and cause pneumonia. According to the BBC, a paper in Nature Chemical Biology describes how the researchers used training data that measured known drugs’ action on the tough bacteria. The learning algorithm then projected the effect of 6,680 compounds with no data on their effectiveness against the germ.

In an hour and a half, the program reduced the list to 240 promising candidates. Testing in the lab found that nine of these were effective and that one, now called abaucin, was extremely potent. While doing lab tests on 240 compounds sounds like a lot of work, it is better than testing nearly 6,700.

Interestingly, the new antibiotic seems only to be effective against the target microbe, which is a plus. It isn’t available for people yet and may not be for some time — drug testing being what it is. However, this is still a great example of how machine learning can augment human brainpower, letting scientists and others focus on what’s really important.

Jun 3, 2023

AI Sheds New Light on the ‘Code of Life’

Posted by in categories: biotech/medical, chemistry, robotics/AI

USC Dornsife researchers employ artificial intelligence to unveil the intricate world of DNA structure and chemistry, enabling unprecedented insights into gene regulation and disease.

Jun 2, 2023

Turning Lead Into Gold

Posted by in categories: chemistry, particle physics

Year 2021 😗😁


They were indeed correct that lead could be turned into gold — even if they were dead wrong about how it could be done. Now, modern science routinely takes us far beyond even the wildest dreams of the alchemists.

One of the most famous stories of nuclear transmutation comes from the 1970s, when nuclear chemist and Nobel laureate Glenn Seaborg worked at the Lawrence Berkeley National Laboratory alongside colleague Walt Loveland and then-graduate student Dave Morrissey. The scientists were using a super-heavy ion linear accelerator to bombard atoms with ions as heavy as uranium at relativistic speeds. “Among the ones we bombarded was lead-208,” Loveland says.

Continue reading “Turning Lead Into Gold” »

Jun 2, 2023

Study examines how DNA damage is repaired by antioxidant enzymes

Posted by in categories: biotech/medical, chemistry

A typical human cell is metabolically active, roaring with chemical reactions that convert nutrients into energy and useful products that sustain life. These reactions also create reactive oxygen species, dangerous by-products like hydrogen peroxide which damage the building blocks of DNA in the same way oxygen and water corrode metal and form rust. Similar to how buildings collapse from the cumulative effect of rust, reactive oxygen species threaten a genome’s integrity.

Cells are thought to delicately balance their energy needs and avoid damaging DNA by containing outside the nucleus and within the cytoplasm and mitochondria. Antioxidant enzymes are deployed to mop up at their source before they reach DNA, a defensive strategy that protects the roughly 3 billion nucleotides from suffering potentially catastrophic mutations. If DNA damage occurs anyway, cells pause momentarily and carry out repairs, synthesizing new building blocks and filling in the gaps.

Despite the central role of in maintaining genome integrity, there has been no systematic, unbiased study on how metabolic perturbations affect the DNA damage and repair process. This is particularly important for diseases like cancer, characterized by their ability to hijack metabolic processes for unfettered growth.

Jun 1, 2023

A gel cocktail uses the body’s sugars to ‘grow’ electrodes in living fish

Posted by in categories: chemistry, neuroscience

A chemical reaction with the body’s own sugars turned a gel cocktail into a conducting material inside zebrafish brains, hearts and tail fins.

Jun 1, 2023

Chemical found in widely used sweetener breaks up DNA

Posted by in categories: biotech/medical, chemistry, health

A new study finds a chemical formed when we digest a widely used sweetener is “genotoxic,” meaning it breaks up DNA. The chemical is also found in trace amounts in the sweetener itself, and the finding raises questions about how the sweetener may contribute to health problems.

At issue is sucralose, a widely used artificial sweetener sold under the trade name Splenda®. Previous work by the same research team established that several fat-soluble compounds are produced in the gut after sucralose ingestion. One of these compounds is sucralose-6-acetate.

Our new work establishes that sucralose-6-acetate is genotoxic. We also found that trace amounts of sucralose-6-acetate can be found in off-the-shelf sucralose, even before it is consumed and metabolized.

Jun 1, 2023

World’s First X-Ray Of A Single Atom Achieved

Posted by in categories: biotech/medical, chemistry

Thinking of X-rays might trigger memories of broken bones or dental check-ups. But this extremely energetic light can show us more than just our bones: it is also used to study the molecular world, even biochemical reactions in real-time. One issue, though, is that researchers have never been able to study a single atom with X-rays. Until now.

Scientists have been able to characterize a single atom using X-rays. Not only they were able to distinguish the type of atoms they were seeing (there were two different ones), but they also managed to study the chemical behavior these atoms were showing.

“Atoms can be routinely imaged with scanning probe microscopes, but without X-rays, one cannot tell what they are made of. We can now detect exactly the type of a particular atom, one atom-at-a-time, and can simultaneously measure its chemical state,” senior author Professor Saw Wai Hla, from the University of Ohio and the Argonne National Laboratory, said in a statement.

May 28, 2023

Medical ‘microrobots’ could one day treat bladder disease, other human illnesses

Posted by in categories: biotech/medical, chemistry, robotics/AI

A team of engineers at the University of Colorado Boulder has designed a new class of tiny, self-propelled robots that can zip through liquid at incredible speeds—and may one day even deliver prescription drugs to hard-to-reach places inside the human body.

The researchers describe their mini healthcare providers in a paper published last month in the journal Small.

“Imagine if microrobots could perform certain tasks in the body, such as non-invasive surgeries,” said Jin Lee, lead author of the study and a postdoctoral researcher in the Department of Chemical and Biological Engineering. “Instead of cutting into the patient, we can simply introduce the robots to the body through a pill or an injection, and they would perform the procedure themselves.”

Page 54 of 271First5152535455565758Last