Toggle light / dark theme

Magnetic Covalent Organic Frameworks (MCOFs): A Sustainable Solution for Emerging Organic Contaminants (EOCs) from the River

Phthalates (PAEs) and bisphenol A (BPA) are significant components in plastic and its derivative industries. They are omnipresent in water sources owing to intensive industrialization and rapid urbanization, hence posing adverse effects on humans and significant environmental issues. Researchers have developed a new magnetic material, called magnetic covalent organic frameworks (MCOFs), that can effectively remove harmful chemicals like PAEs and BPA from water. Made using a special method that prevents clumping, these materials are highly porous, magnetic and reusable up to 15 times. They showed excellent removal efficiency, even at very low pollutant levels found in real river water. The study also revealed that the removal process involves strong chemical bonding. This breakthrough offers a promising, eco-friendly solution for cleaning water contaminated by plastics and industrial waste.

Read the article in Royal Society Open Science.


Abstract. The synthesis and characterization of effective magnetic covalent organic frameworks (MCOFs) are presented for the highly efficient adsorption of dimethyl phthalate (DMP), dibutyl phthalate (DBP) and bisphenol A (BPA) from the aqueous environment. The novelty of this research lies in the development of MCOFs through a coprecipitation method that incorporates an innovative silica inner shell. This crucial feature not only prevents aggregation of the magnetic core, which is a significant limitation of conventional adsorbents, but also enables robust interactions between the core and the outer covalent organic framework (COF). The synthesized MCOFs were comprehensively characterised using a variety of techniques. Fourier-transform infrared spectroscopy (FTIR) and vibrating sample magnetometry (VSM) analyses confirmed successful synthesis and strong magnetic properties, while field-emission scanning electron microscopy (FESEM) revealed the presence of spherical, porous structures with small granules. Energy-dispursive X-ray (EDX) spectrometry analysis further confirmed the successful synthesis, showing a material composition of 58.2% Fe, 33.4% O, 4.8% C, and 3.2% Si. Brunauer–Emmett–Teller (BET) analysis showed the MCOFs possess a high surface area of 128.1 m2 g–1 and a pore diameter of 16.8 nm, indicating abundant active sites for adsorption. Under optimal conditions (pH 7,100 mg adsorbent dosage, and 25-minute contact time) the MCOFs exhibited exceptional adsorption performance, with removal efficiencies of 90.0% for DMP, 86.0% for DBP, and 92.0% for BPA. The kinetic study revealed that the adsorption mechanism follows the pseudo-second-order model, suggesting a significant chemisorption process. Crucially, in situ FTIR analysis provided spectroscopic validation that hydrogen bonding and π–π stacking are the predominant interactions between the MCOFs and the organic contaminants. The developed analytical method achieved low detection limits of 0.0058 mg l−1 for DMP, 0.0079 mg l−1 for DBP and 0.0063 mg l−1 for BPA, indicating high sensitivity for trace-level contaminant detection in real water samples. Furthermore, the adsorbent demonstrated exceptional reusability, maintaining high performance after 15 adsorption–desorption cycles, which is a significant improvement over conventional adsorbents. This study demonstrates that MCOFs with a silica inner shell are a highly promising, stable and sustainable solution for the removal of emerging organic contaminants (EOCs).

A “dormant” brain protein turns out to be a powerful switch

Researchers at Johns Hopkins Medicine report that they have uncovered a promising drug target that could allow scientists to increase or decrease the activity of specific brain proteins. The discovery may lead to new treatments for psychiatric conditions such as anxiety and schizophrenia, as well as a neurological disorder that affects movement and balance. The work was supported by funding from the National Institutes of Health.

The proteins at the center of the research are known as delta-type ionotropic glutamate receptors, or GluDs. These proteins are known to play an important role in how neurons communicate with each other. According to the researchers, mutations in GluDs have been linked to psychiatric disorders, including anxiety and schizophrenia. Despite this connection, scientists have struggled for years to understand exactly how these proteins work, making it difficult to design treatments that could regulate their activity.

“This class of protein has long been thought to be sitting dormant in the brain,” says Edward Twomey, Ph.D., assistant professor of biophysics and biophysical chemistry at the Johns Hopkins University School of Medicine. “Our findings indicate they are very much active and offer a potential channel to develop new therapies.”

It’s Official: Astronomers Detect Complex Sulfur Molecule in Interstellar Space

In the heart of our galaxy, scientists have discovered the largest sulfur-bearing molecule ever detected beyond Earth, with significant implications for the study of the cosmic origins of life.

The chemical is known as thiepine, or 2,5-cyclohexadiene-1-thione (C₆H₆S), a ring-shaped sulfur-bearing hydrocarbon produced in biochemical reactions.

When examining the molecular cloud G+0.693–0.027, a star-forming region about 27,000 light-years from Earth near the center of the Milky Way, astronomers from the Max Planck Institute for Extraterrestrial Physics (MPE) and the CSIC-INTA Centro de Astrobiología (CAB) detected this complex molecule in space for the first time.

How Epigenetic Reprogramming Makes Cells Act Young Again

Aging doesn’t rewrite your DNA, it scrambles how your cells read it.

This clip explains epigenetic drift and how Life Biosciences’ therapy, ER100, uses Yamanaka factors to restore youthful epigenetic patterns in aged cells. By resetting the chemical marks that control gene expression, cells can behave as if they’re young again without changing the underlying DNA.

It’s the same biological process that happens early in embryonic development, applied in a controlled way to adult cells.

Abstract: In a cohort of over 1,000 patients with BreastCancer

Emilio Hirsch & team identify SH3BP5L as the most highly expressed guanine nucleotide exchange factor (GEF) for RAB11A, and its inhibition lowers lung metastasis and cell spreading in triple negative breast cancer models (TNBC):

The figure shows immunohistochemical assessment of SH3BP5L expression in tissue from patients with breast cancer.

@unito.it @fondazioneumbertoveronesi


1Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “G. Tarone,” University of Torino, Torino, Italy.

2IEO, European Institute of Oncology IRCCS, Milan, Italy.

3Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy.

“The Bioelectric Interface to the Collective Intelligence of Morphogenesis” by Michael Levin

This is a ~57 minute talk titled “The Bioelectric Interface to the Collective Intelligence of Morphogenesis: development, regeneration, cancer, and beyond” which I gave at a UCSF seminar for an audience of graduate students and post-docs in Biophysics, Bioinformatics, and Chemical Biology. I covered the role of bioelectricity as cognitive glue underlying high-level adaptive plasticity in living tissue, recent progress in exploiting that interface, and new developments in research platforms for this field.

Controlled ‘oxidative spark’ may serve as a surprising ally in brain repair

Oxidative stress is a direct consequence of an excess in the body of so-called free radicals—reactive, unstable molecules that contain oxygen. Free radicals are normal metabolic by-products and also help to relay signals in the body. In turn, oxidative stress (an overload of these molecules) can be caused by lifestyle, environmental, and biological factors such as smoking, high alcohol consumption, poor diet, stress, pollution, radiation, industrial chemicals, and chronic inflammation.

When this occurs, it creates an imbalance between the production of free radicals and the body’s antioxidant defenses, which are responsible for neutralizing them.

Scientists harness nature’s chirality bias to design series of complex mechanically interlocked molecules

In nature, molecules often show a strong preference for partnering with other molecules that share the same chirality or handedness. A behavior that is quite evident in the phenomenon known as homochirality-driven entanglement, where molecules that are all left-handed or all right-handed preferentially recognize and wrap around one another, forming complex and interlocked structures.

We have known about this natural behavior for quite some time, but its potential in a laboratory setting remained largely untapped—until now. By putting this principle to work, researchers cracked a new technique that tackles a long-standing challenge in molecular synthesis.

A team from Shanghai Jiao Tong University, China, and the University of Bristol, UK, leveraged stereochemical information inherent in amino acids to guide the synthesis of a library of chiral Solomon links —a class of complex, mechanically interlocked molecules (MIMs) with doubly interlocked structures.

A Simple Chemical Tweak Unlocks One of Quantum Computing’s Holy Grails

Even supercomputers can stall out on problems where nature refuses to play by everyday rules. Predicting how complex molecules behave or testing the strength of modern encryption can demand calculations that grow too quickly for classical hardware to keep up. Quantum computers are designed to tackle that kind of complexity, but only if engineers can build systems that run with extremely low error rates.

One of the most promising routes to that reliability involves a rare class of materials called topological superconductors. In plain terms, these are superconductors that also have built-in “protected” quantum behavior, which researchers hope could help shield delicate quantum information from noise. The catch is that making materials with these properties is famously difficult.

Why only a small number of planets are suitable for life

For life to develop on a planet, certain chemical elements are needed in sufficient quantities. Phosphorus and nitrogen are essential. Phosphorus is vital for the formation of DNA and RNA, which store and transmit genetic information, and for the energy balance of cells. Nitrogen is an essential component of proteins, which are needed for the formation, structure, and function of cells. Without these two elements, no life can develop out of lifeless matter.

A study led by Craig Walton, postdoc at the Center for Origin and Prevalence of Life at ETH Zurich, and ETH professor Maria Schönbächler has now shown that there must be sufficient phosphorus and nitrogen present when a planet’s core is formed. The study is published in Nature Astronomy.

“During the formation of a planet’s core, there needs to be exactly the right amount of oxygen present so that phosphorus and nitrogen can remain on the surface of the planet,” explains Walton, lead author of the study. This was exactly the case with Earth around 4.6 billion years ago—a stroke of chemical good fortune in the universe. This finding may affect how scientists search for life elsewhere in the universe.

/* */