Archive for the ‘chemistry’ category: Page 6

Feb 1, 2019

Celebrate the women behind the periodic table

Posted by in category: chemistry

#HiddenFigures #Friday Here we spotlight some of the women who revolutionized our understanding of the elements. Marie Curie is the most celebrated, for her double Nobel-prizewinning research on radioactivity and for discovering polonium and radium. Stories of other women’s roles are scarce. So, too, is an appreciation of the skills required, including tenacity and diligence in performing experiments, sifting through data and reassessing theories.

Brigitte Van Tiggelen and Annette Lykknes spotlight female researchers who discovered elements and their properties.

Read more

Jan 30, 2019

Happy birthday, periodic table

Posted by in categories: chemistry, education

How much do you know about the iconic symbol of science pinned to every classroom wall?

Read more

Jan 25, 2019

Europe’s ‘New’ Periodic Table Predicts Which Elements Will Disappear in the Next 100 Years

Posted by in categories: chemistry, mobile phones

Scientists made a ‘new’ periodic table of elements to show how smartphones (and party balloons) are draining Earth’s resources.

Read more

Jan 22, 2019

New insight into cell membranes could improve drug testing and design

Posted by in categories: biotech/medical, chemistry

Research at the University of Arkansas on membrane proteins could lead to better development and testing of drugs. Chemistry researchers studied a type of membrane protein that expels drugs from a cell, contributing to drug resistance. They found that the lipid composition of the cell membrane has an effect on the behavior of these proteins, which should be taken into account when testing drugs that target membrane proteins. Their results are available open-access in the journal ACS Central Science.

Read more

Jan 17, 2019

New scale for electronegativity rewrites the chemistry textbook

Posted by in categories: chemistry, education, particle physics, quantum physics

Electronegativity is one of the most well-known models for explaining why chemical reactions occur. Now, Martin Rahm from Chalmers University of Technology, Sweden, has redefined the concept with a new, more comprehensive scale. His work, undertaken with colleagues including a Nobel Prize-winner, has been published in the Journal of the American Chemical Society.

The theory of is used to describe how strongly different atoms attract electrons. By using electronegativity scales, one can predict the approximate charge distribution in different molecules and materials, without needing to resort to complex quantum mechanical calculations or spectroscopic studies. This is vital for understanding all kinds of materials, as well as for designing new ones. Used daily by chemists and materials researchers all over the world, the concept originates from Swedish chemist Jöns Jacob Berzelius’ research in the 19th century and is widely taught at high-school level.

Now, Martin Rahm, Assistant Professor in Physical Chemistry at Chalmers University of Technology, has developed a brand-new scale of electronegativity.

Continue reading “New scale for electronegativity rewrites the chemistry textbook” »

Jan 10, 2019

There’s a glitch at the edge of the universe that could remake physics

Posted by in categories: biological, chemistry, particle physics

One mysterious number determines how physics, chemistry and biology work. But controversial experimental hints suggest it’s not one number at all.

By Michael Brooks

IT IS a well-kept secret, but we know the answer to life, the universe and everything. It’s not 42 – it’s 1/137.

Continue reading “There’s a glitch at the edge of the universe that could remake physics” »

Jan 7, 2019

The iconic periodic table could have looked very different

Posted by in category: chemistry

But the periodic table didn’t actually start with Mendeleev. Many had tinkered with arranging the elements. Decades before, chemist John Dalton tried to create a table as well as some rather interesting symbols for the elements (they didn’t catch on). And just a few years before Mendeleev sat down with his deck of homemade cards, John Newlands also created a table sorting the elements by their properties.

Mendeleev’s genius was in what he left out of his table. He recognised that certain elements were missing, yet to be discovered. So where Dalton, Newlands and others had laid out what was known, Mendeleev left space for the unknown. Even more amazingly, he accurately predicted the properties of the missing elements.

Dimitry Mendeleev’s table

Continue reading “The iconic periodic table could have looked very different” »

Jan 4, 2019

The Unlikely Origins of the First Quantum Computer

Posted by in categories: biotech/medical, chemistry, encryption, quantum physics, robotics/AI

Within days of each other back in 1998, two teams published the results of the first real-world quantum computations. But the first quantum computers weren’t computers at all. They were biochemistry equipment, relying on the same science as MRI machines.

You might think of quantum computing as a hyped-up race between computer companies to build a powerful processing device that will make more lifelike AI, revolutionize medicine, and crack the encryption that protects our data. And indeed, the prototype quantum computers of the late 1990s indirectly led to the quantum computers built by Google and IBM. But that’s not how it all began—it started with physicists tinkering with mathematics and biochemistry equipment for curiosity’s sake.

Read more

Jan 2, 2019

Dr. Mikhail Shchepinov, CSO at Retrotope, Inc. USA will speak at the 2019 Undoing Aging Conference

Posted by in categories: biotech/medical, chemistry, life extension

“Mikhail first approached me nearly 15 years ago with the totally crazy idea that replacing hydrogen with deuterium in bioactive molecules so as to slow down undesirable chemical reactions. Well, if ever there were a proof that some of the craziest ideas are actually right, it is this one. In the years since, Misha and his company Retrotope have taken this concept from chemistry to yeast to mice and all the way to highly promising clinical results for several hitherto untreatable orphan diseases. I’m looking forward to hearing the latest!” says Aubrey de Grey.


#undoingaging #sens #foreverhealthy

Continue reading “Dr. Mikhail Shchepinov, CSO at Retrotope, Inc. USA will speak at the 2019 Undoing Aging Conference” »

Dec 28, 2018

Super catalyst turns chemical ‘trash’ into treasure

Posted by in category: chemistry

The paper is the latest in a series demonstrating the ability to use a dirhodium catalyst to selectively functionalize C-H bonds in a streamlined manner, while also maintaining virtually full control of the three-dimensional shape of the molecules produced.

“This latest catalyst is so selective that it goes cleanly for just one C-H bond—even though there are several C-H bonds very similar to it within the molecule,” says senior author Huw Davies, professor of organic chemistry. “That was a huge surprise, even to us.”

This dirhodium catalyst works on a substrate of tert-butyl cyclohexane, a hydrocarbon—one of the simplest of organic molecules, consisting entirely of C-H bonds.

Continue reading “Super catalyst turns chemical ‘trash’ into treasure” »

Page 6 of 29First345678910Last