Toggle light / dark theme

Turning pollution into clean fuel with stable methane production from carbon dioxide

Carbon dioxide (CO2) is one of the world’s most abundant pollutants and a key driver of climate change. To mitigate its impact, researchers around the world are exploring ways to capture CO2 from the atmosphere and transform it into valuable products, such as clean fuels or plastics. While the idea holds great promise, turning it into reality—at least on a large scale—remains a scientific challenge.

A new study led by Smith Engineering researcher Cao Thang Dinh (Chemical Engineering), Canada Research Chair in Sustainable Fuels and Chemicals, paves the way to practical applications of carbon conversion technologies and may reshape how we design future carbon conversion systems. The research addresses one of the main roadblocks in the carbon : catalyst stability.

In chemical engineering, a catalyst is a substance that accelerates a reaction—ideally, without being consumed in the process. In the case of carbon conversion, catalysts play a critical role by enabling the transformation of CO₂ into useful products such as fuels and building blocks for sustainable materials.

Isotropic MOF coating reduces side reactions to boost stability of solid-state Na batteries

In recent years, energy engineers have been trying to design new reliable batteries that can store more energy and allow electronics to operate for longer periods of time before they need to be charged. Some of the most promising among these newly developed batteries are solid-state batteries, which contain solid electrolytes instead of liquid ones.

Compared to batteries with liquid electrolytes that are widely used today, solid-state batteries could exhibit higher energy densities (i.e., could store more energy) and longer lifetimes. However, many of these batteries have been found to be unstable, due to unwanted chemical reactions that occur between their high-voltage cathodes (i.e., positive electrodes) and solid electrolytes, which can speed up the degradation of the batteries’ performance over time.

These undesirable side reactions are particularly common in sodium-ion (Na+) solid-state batteries, which use Na+ ions to store and release electrical energy. This is because while Na is more abundant and cheaper than lithium, Na-ion batteries are inherently more chemically reactive than Li-ion batteries.

Pressure turns Ångström-thin semiconducting bismuth into a metal, expanding options for reconfigurable electronics

Two-dimensional (2D) materials, sparked by the isolation of Nobel-prize-winning graphene in 2004, has revolutionized modern materials science by showing that electrical, optical, and mechanical behaviors can be tuned simply by adjusting the thickness, strain, or stacking order of such 2D materials. From transistors and flexible display to neuromorphic chips, the future of electronics is expected to be significantly empowered by 2D materials.

In a new study published in Nano Letters titled “Pressure-Driven Metallicity in Ångström-Thickness 2D Bismuth and Layer-Selective Ohmic Contact to MoS2,” researchers led by SUTD have discovered that a gentle squeeze is enough to make bismuth—one of the heaviest elements in the periodic table—switch its electrical personality.

Using state-of-the-art density functional theory (DFT) simulations, the team showed that when a single layer of bismuth, only a few atoms thick, is compressed or “squeezed” between surrounding materials, the atoms reorganize from a slightly corrugated (or buckled) structure into a perfectly flat one. This structural flattening, though subtle, has dramatic electronic consequences: it eliminates the energy band gap and allows electrons to move freely, turning the material metallic.

World’s first full-cell dual-cation battery developed in Ireland

Researchers at University of Limerick (UL) have developed a battery that could reshape the future of electric vehicles and portable electronics. Their breakthrough in energy storage technology has seen the development of the world’s first full-cell dual-cation battery.

This innovative system combines lithium and sodium ions to significantly enhance both battery capacity and stability, marking a new frontier in sustainable energy research.

The work, published in Nano Energy, was led by Hugh Geaney, Associate Professor of Chemistry at UL’s Department of Chemical Sciences and Principal Investigator at UL’s Bernal Institute, and Government of Ireland postdoctoral fellow, Dr. Syed Abdul Ahad, his colleague at the Department and the Bernal Institute.

AI streamlines search for catalysts to clear hydrogen production hurdles

To increase energy efficiency and reduce the carbon footprint of hydrogen fuel production, Fanglin Che, associate professor in the Department of Chemical Engineering at Worcester Polytechnic Institute, is leveraging the power and potential of machine learning and computational modeling. The multi-university team she leads has completed a study that was just published in Nature Chemical Engineering. The study utilized artificial intelligence to identify catalysts with the potential to facilitate cleaner and more efficient hydrogen production.

Atomic switching converts indoles to benzimidazoles in one pot, accelerating drug discovery

Scientists have achieved a new feat in molecular editing by swapping carbon for nitrogen, enabling the direct conversion of indoles into benzimidazoles. This simple switch in a one-pot method offers a hassle-free and effective way of designing medicinally relevant molecules. The work is published in Nature Chemistry.

Single-atom swap reactions require the selective formation and breaking of multiple bonds at the same time, making them quite rare and challenging.

Researchers from ETH Zurich overcame these hurdles by exploiting the electron-rich indole ring’s eagerness to undergo oxidative cleavage via Witkop oxidation. This step can split the electron-rich ring open to form a dicarbonyl intermediate, thereby creating an entry point for subsequent cascade reactions.

A volcano or a meteorite? New evidence sheds light on puzzling discovery in Greenland’s ice sheet

Buried deep in Greenland’s ice sheet lies a puzzling chemical signature that has sparked intense scientific debate. A sharp spike in platinum concentrations, discovered in an ice core (a cylinder of ice drilled out of ice sheets and glaciers) and dated to around 12,800 years ago, has provided support for a hypothesis that Earth was struck by an exotic meteorite or comet at that time.

Our new research published in PLOS One offers a much more mundane explanation: this mystery signature may have originated from a volcanic fissure eruption in Iceland, not space.

The timing matters. The platinum spike occurs near the beginning of our planet’s last great cold period, the Younger Dryas Event. This lasted from about 12,870 to 11,700 years ago and saw temperatures plummet across the northern hemisphere.

High-pressure electrolysis sustainably converts captured CO₂ into industrial-grade ethylene

Researchers at King Abdullah University of Science and Technology have unveiled a breakthrough system that could change the way we think about carbon emissions. Published in Nature Catalysis the researchers outline a system for converting captured carbon dioxide (CO₂) into industrial-grade ethylene, a commodity chemical essential to plastics, textiles, and construction. The work shows a direct path to transforming greenhouse gas emissions into valuable chemical products.

In addition to the environmental benefits, lead researcher Assistant Professor Xu Lu said key efficiencies in the system create an opportunity to turn the otherwise costly process of capturing CO2 into a profit.

“We designed and tested the system under realistic industrial conditions using captured, high-pressure CO₂,” he said. “Our results show captured carbon can be valorized into a valuable product with real economic potential.”

A low-cost catalytic cycle could advance the separation, storage and transportation of hydrogen

Hydrogen (H2) is an Earth-abundant molecule that is widely used in industrial settings and could soon contribute to the clean generation and storage of electricity. Most notably, it can be used to generate electricity in fuel cells, which could in turn power heavy-duty vehicles or serve as back-up energy systems.

Despite its potential for various real-world applications, is often expensive to produce, store and safely transport to desired locations. Moreover, before it can be used, it typically needs to be purified, as hydrogen produced industrially is typically mixed with other gases, such as (CO), (CO₂), nitrogen (N₂) and light hydrocarbons.

Researchers at Fudan University and other institutes in China recently devised a new strategy to separate hydrogen from impurities at low temperatures, while also enabling its safe storage and transportation. Their proposed method, outlined in a paper published in Nature Energy, relies on a reversible chemical reaction between two that act as hydrogen carriers, enabling the reversible absorption and release of hydrogen.

/* */