Toggle light / dark theme

Guava’s secret molecule could fight liver cancer

New research by William Chain, associate professor in the University of Delaware’s Department of Chemistry and Biochemistry, and his lab, uses a molecule found in a tropical fruit to offer hope in the fight against liver-related cancers, one of the world’s top causes of cancer deaths.

Using a process called natural product total synthesis, Chain and his lab group have invented a pathway that uses widely available chemicals to create molecules found in a guava plant that are known to fight these deadly cancers. The work was published in one of the leading chemistry publications, the international journal Angewandte Chemie.

The research provides scientists around the world with an easy and low cost method to create large amounts of the naturally-occurring molecules, and opens doors to more effective and cheaper treatments.


Nature has long been the source of lifesaving medicines, from willow bark’s natural aspirin to new discoveries in tropical fruits. Now, chemists at the University of Delaware have pioneered a way to recreate powerful molecules from guava plants that show promise against liver cancer. Their method provides a low-cost, scalable recipe for scientists worldwide, sparking collaboration and potentially transforming cancer treatment.

Machine learning and quantum chemistry unite to simulate catalyst dynamics

Catalysts play an indispensable role in modern manufacturing. More than 80% of all manufactured products, from pharmaceuticals to plastics, rely on catalytic processes at some stage of production. Transition metals, in particular, stand out as highly effective catalysts because their partially filled d-orbitals allow them to easily exchange electrons with other molecules. This very property, however, makes them challenging to model accurately, requiring precise descriptions of their electronic structure.

Designing efficient transition-metal catalysts that can perform under realistic conditions requires more than a static snapshot of a reaction. Instead, we need to capture the dynamic picture—how molecules move and interact at different temperatures and pressures, where atomic motion fundamentally shapes catalytic performance.

To meet this challenge, the lab of Prof. Laura Gagliardi at the University of Chicago Pritzker School of Molecular Engineering (UChicago PME) and Chemistry Department has developed a powerful new tool that harnesses electronic structure theories and machine learning to simulate transition metal catalytic dynamics with both accuracy and speed.

Advanced Membrane Science and Technology for Water and Wastewater Treatment

The pressing need for clean and affordable drinking water is intensifying as global populations rise and pollutants increasingly compromise available water sources. Traditional methods of water purification, while effective, are often insufficient to address the complex array of contaminants now present in water, including microorganisms, organic compounds, and heavy metals. Over the past four decades, significant breakthroughs in water and wastewater treatment have been achieved through the application of nanotechnology, particularly in the development of nanomaterials and nanomembranes. These science and technology advancements have revolutionized membrane-based water and wastewater treatment, offering new levels of efficiency and precision in removing a wide range of pollutants.

This Collection aims to advance our understanding of membrane-based water and wastewater treatment, underlining the challenges and opportunities within this rapidly evolving field, e.g., the limitations of conventional ultrafiltration and microfiltration membrane systems, such as their reduced effectiveness in removing certain trace organic compounds (TrOCs) and the persistent issues of membrane fouling and salinity build-up. The Collection seeks to explore innovative solutions, e.g., high-retention membrane bioreactors (HR-MBRs) and advanced pre-treatment options like advanced oxidation processes (AOPs), which have the potential to significantly improve the effectiveness and sustainability of water and wastewater treatment processes.

Moreover, the Collection emphasizes the importance of developing sustainable materials, such as biopolymers, which can replace traditional synthetic polymers in membrane fabrication. While these materials offer eco-friendly alternatives with unique adsorption properties, their performance can vary based on source and processing methods, presenting challenges in terms of durability and scalability. The Collection also aims to showcase advancements in PVDF-based membranes, which are gaining popularity due to their superior mechanical and chemical properties, and to examine the integration of these materials in innovative membrane technologies, e.g., membrane distillation (MD) and hybrid systems.

Lithium-metal batteries can charge in 12 minutes for an 800km drive

Korean researchers have ushered in a new era for electric vehicle (EV) battery technology by solving the long-standing dendrite problem in lithium-metal batteries. While conventional lithium-ion batteries are limited to a maximum range of 600 km, the new battery can achieve a range of 800 km on a single charge, a lifespan of over 300,000 km, and a super-fast charging time of just 12 minutes.

A research team from the Frontier Research Laboratory (FRL), a joint project between Professor Hee Tak Kim from the Department of Chemical and Biomolecular Engineering, and LG Energy Solution, has developed a “cohesion-inhibiting new liquid electrolyte” original technology that can dramatically increase the performance of lithium-metal batteries. Their paper is published in Nature Energy.

Lithium-metal batteries replace the graphite anode, a key component of lithium-ion batteries, with lithium metal. However, lithium metal has a technical challenge known as dendrite, which makes it difficult to secure the battery’s lifespan and stability. Dendrites are tree-like lithium crystals that form on the anode surface during battery charging, negatively affecting battery performance and stability.

First-principles simulations reveal quantum entanglement in molecular polariton dynamics

This is what fun looks like for a particular set of theoretical chemists driven to solve extremely difficult problems: Deciding whether the electromagnetic fields in molecular polaritons should be treated classically or quantum mechanically.

Graduate student Millan Welman of the Hammes-Schiffer Group is first author on a new paper that presents a hierarchy of first principles simulations of the dynamics of molecular polaritons. The research is published in the Journal of Chemical Theory and Computation.

Originally 67 pages long, the paper is dense with von Neumann equations and power spectra. It explores dynamics on both electronic and vibrational energy scales. It makes use of time-dependent density functional theory (DFT) in both its conventional and nuclear-electronic orbital (NEO) forms. It spans semiclassical, mean-field-quantum, and full-quantum approaches to simulate dynamics.

Porous radical organic framework improves lithium-sulfur batteries

A team led by Prof. Yan Lu, HZB, and Prof. Arne Thomas, Technical University of Berlin, has developed a material that enhances the capacity and stability of lithium-sulfur batteries. The material is based on polymers that form a framework with open pores (known as radical-cationic covalent organic frameworks or COFs). Catalytically accelerated reactions take place in these pores, firmly trapping polysulfides, which would shorten the battery life.

Some of the experimental analyses were conducted at the BAMline at BESSY II. The research is published in the Journal of the American Chemical Society.

Crystalline framework structures made of organic polymers are a particularly interesting class of materials. They are characterized by their high porosity, comparable to a sponge, but with pores measuring only a few micrometers at most. These materials can exhibit special functionalities, which make them interesting for certain applications in electrochemical energy storage devices.

Engineers develop technology that stimulates heart cells with light

In a new study, University of California, Irvine chemical and biomolecular engineering researchers report the creation of biomolecules that can help grow light-sensitive heart muscle cells in the laboratory. The development enables a biotechnology that could deliver light-triggered signals to the heart, improving its function, without requiring genetic modifications or invasive procedures.

“We show for the first time that light can be converted into cardiac stimulatory cues, with made of biomolecules,” said Herdeline Ann Ardoña, assistant professor of chemical and biomolecular engineering. “This can be beneficial for downstream medical applications, such as in cardiac pacemaking technologies, or helping direct therapeutic patient-derived stem to better mimic adult heart cell features.”

The findings are reported in the Proceedings of the National Academy of Sciences. The paper’s co-first authors are recent Ph.D. graduate Sujeung Lim, and Ze-Fan Yao, previous postdoctoral scholar in the Ardoña Research Group.

Caltech Researchers Upend Decades-Old Model of Mitochondrial Protein Import

Researchers showed that many mitochondrial proteins enter the organelle during synthesis, guided by folding patterns and structural signals. This discovery revises decades of biochemical models. Mitochondria are organelles most commonly known as the “powerhouses of the cell” because they generate

NASA finds Titan’s alien lakes may be creating primitive cells

Saturn’s moon Titan may be more alive with possibilities than we thought. New NASA research suggests that in Titan’s freezing methane and ethane lakes, simple molecules could naturally arrange themselves into vesicles—tiny bubble-like structures that mimic the first steps toward life. These compartments, born from splashing droplets and complex chemistry in Titan’s atmosphere, could act like primitive cell walls.

NASA research has shown that cell-like compartments called vesicles could form naturally in the lakes of Saturn’s moon Titan.

Titan is the only world apart from Earth that is known to have liquid on its surface. However, Titan’s lakes and seas are not filled with water. Instead, they contain liquid hydrocarbons like ethane and methane.

/* */