Toggle light / dark theme

A city in Southern California has become the first in the nation to replace its police patrol cars with electric vehicles, officials announced Monday, unveiling a fleet of 20 new Teslas.

South Pasadena on the edge of Los Angeles will replace its gas-guzzling police cruisers with the Teslas to help protect public health and fight climate change through reducing emissions. The Teslas will use new electric vehicle chargers installed at City Hall, officials said.

Adopting the right mix of sustainable construction practices could allow Canada to meet its housing goals—as many as 5.8 million new homes by 2030—without blowing past its climate commitments.

Researchers in the University of Toronto’s Centre for the Sustainable Built Environment (CSBE) have developed a computer simulation that forecasts the emissions associated with new housing and infrastructure construction. The paper is published in the journal Environmental Science & Technology.

The work builds on previous CSBE research showing that in order for Canada to meet its greenhouse gas emissions targets, homes built in 2030 will need to produce 83% fewer greenhouse gases during construction than those built in 2018.

Local decentralized energy systems, known as microgrids, can make urban infrastructures more resilient and reduce risks for the population, for example, in large-scale power outages due to natural hazards or cyberattacks.

In Nature Sustainability researchers from Karlsruhe Institute of Technology (KIT) present design criteria for microgrids that allow for fair treatment of different social groups alongside technical factors. The study shows how cities can shape the transformation towards a secure and more sustainable and equitable energy supply.

Climate change increases the probability of extreme events, as we have seen during the massive flooding of large parts of southern Germany in June. The question of how cities and municipalities can make more resilient and more secure in the face of such crises is bringing so-called microgrids into focus.

Scientists all over the world use modeling approaches to understand complex natural systems such as climate systems or neuronal or biochemical networks. A team of researchers has now developed a new mathematical framework that explains, for the first time, a mechanism behind long transient behaviors in complex systems.

The formation of a black hole from light alone is permitted by general relativity, but a new study says quantum physics rules it out.

Black holes are known to form from large concentrations of mass, such as burned-out stars. But according to general relativity, they can also form from ultra-intense light. Theorists have speculated about this idea for decades. However, calculations by a team of researchers now suggest that light-induced black holes are not possible after all because quantum-mechanical effects cause too much leakage of energy for the collapse to proceed [1].

The extreme density of mass produced by a collapsed star can curve spacetime so severely that no light entering the region can escape. The formation of a black hole from light is possible according to general relativity because mass and energy are equivalent, so the energy in an electromagnetic field can also curve spacetime [2]. Putative electromagnetic black holes have become popularly known as kugelblitze, German for “ball lightning,” following the terminology used by Princeton University physicist John Wheeler in early studies of electromagnetically generated gravitational fields in the 1950s [3].

In the ongoing fight against climate change, is it better to plant trees or allow nature to do it for us? This is what a recent study published in Nature Climate Change as a team of international researchers investigated the cost-effectiveness of reforestation for mitigating the effects of climate change, specifically regarding whether planting trees or natural reforestation are appropriate measures for this effort. This study holds the potential to help scientists, conservationists, and the public better understand the steps that can be taken to mitigate the effects of climate change, for both the short and long term.

“Trees can play a role in climate change mitigation, for multiple reasons,” said Dr. Jacob Bukoski, who is an Assistant Professor in the Oregon State University College of Forestry and a co-author on the study. “It’s pretty easy to understand that forests pull carbon dioxide from the atmosphere and store it, and trees are something pretty much everyone can get behind – we have seen multiple bipartisan acts for tree planting introduced in Congress. This study brings a nuanced perspective to the whole ‘should we plant trees to solve climate change’ debate.”

Scientists from the Woods Hole Oceanographic Institution are seeking a federal permit to experiment in the waters off Cape Cod and see if tweaking the ocean’s chemistry could help slow climate change.

If the project moves forward, it will likely be the first ocean field test of this technology in the U.S. But the plan faces resistance from both environmentalists and the commercial fishing industry.

The scientists want to disperse 6,600 gallons of sodium hydroxide — a strong base — into the ocean about 10 miles south of Martha’s Vineyard. The process, called ocean alkalinity enhancement or OAE, should temporarily increase that patch of water’s ability to absorb carbon dioxide from the air. This first phase of the project, targeted for early fall, will test chemical changes to the seawater, diffusion of the chemical and effects on the ecosystem.

Researchers have created a quantum tornado in superfluid helium to simulate black hole conditions, advancing our understanding of black hole physics and the behavior of quantum fields in curved spacetimes, culminating in a unique art and science exhibition.

Scientists have, for the first time, created a giant quantum vortex in superfluid helium to mimic a black hole. This breakthrough has enabled them to observe in greater detail how analog black holes behave and interact with their surroundings.

Research led by the University of Nottingham, in collaboration with King’s College London and Newcastle University, has created a novel experimental platform: a quantum tornado. They have created a giant swirling vortex within superfluid helium that is chilled to the lowest possible temperatures. Through the observation of minute wave dynamics on the superfluid’s surface, the research team has shown that these quantum tornados mimic gravitational conditions near rotating black holes. The research has been published today in Nature.

A team of scientists from Montana State University has provided the first experimental evidence that two new groups of microbes thriving in thermal features in Yellowstone National Park produce methane—a discovery that could one day contribute to the development of methods to mitigate climate change and provide insight into potential life elsewhere in our solar system.