Toggle light / dark theme

NASA scientists have proposed a bold plan that could give Mars its atmosphere back and make the Red Planet habitable for future generations of human colonists.

By launching a giant magnetic shield into space to protect Mars from solar winds, the space agency says we could restore the Red Planet’s atmosphere, and terraform the Martian environment so that liquid water flows on the surface once again.

Mars may seem like a cold, arid wasteland these days, but the Red Planet is thought to have once had a thick atmosphere that could have maintained deep oceans filled with liquid water, and a warmer, potentially habitable climate.

Read more

Gets too advanced for me, but still interesting.


As the world transitions to a low-carbon energy future, near-term, large-scale deployment of solar power will be critical to mitigating climate change by midcentury. Climate scientists estimate that the world will need 10 terawatts (TW) or more of solar power by 2030—at least 50 times the level deployed today. At the MIT Photovoltaics Research Laboratory (PVLab), teams are working both to define what’s needed to get there and to help make it happen. “Our job is to figure out how to reach a minimum of 10 TW in an economically and environmentally sustainable way through technology innovation,” says Tonio Buonassisi, associate professor of mechanical engineering and lab director.

Their analyses outline a daunting challenge. First they calculated the growth rate of solar required to achieve 10 TW by 2030 and the minimum sustainable price that would elicit that growth without help from subsidies. Current technology is clearly not up to the task. “It would take between $1 trillion and $4 trillion of additional debt to just push current technology into the marketplace to do the job, and that’d be hard,” says Buonassisi. So what needs to change?

Using models that combine technological and economic variables, the researchers determined that three changes are required: reduce the cost of modules by 50 percent, increase the conversion efficiency of modules (the fraction of solar energy they convert into electricity) by 50 percent, and decrease the cost of building new factories by 70 percent. Getting all of that to happen quickly enough—within five years—will require near-term policies to incentivize deployment plus a major push on technological innovation to reduce costs so that government support can decrease over time.

Congrats Dr. Happer.


I’ve been waiting to find out who will be Pres. Trump’s science adviser. It appears to be physicist Dr. William Happer, a physicist currently teaching at Princeont University, and former Director of the U.S. Department of Energy’s Office of Science from 1991–1993. He’s no slouch as a scientist. His work for the Air Force on the sodium guidestar laser platform for the military’s missile defense program provided information on the tropopause layer in the upper atmosphere, which is where atmospheric wave fronts distort both starlight and laser emissions, and where heat either begins to leak into space or does not, depending on how much and what kind of gas is blocking heat radiation.

The tropopause is the boundary between the troposphere, where we live and where weather takes place, and the stratosphere. The layers above that are the stratosphere, where stratocirrus clouds form as floating clouds of ice, the mesosphere, the thermosphere and the top, very thin layer, the exosphere. Beyond that is space.

Dr. Happer’s view of the whole climate thing clashes badly with the PC crowd’s notions about it, mostly because during the development of the sodium guidestar, he had to learn the physics and chemistry of the troposphere and the tropopause, and the layers above the troposphere.

A vast patch of abnormally warm water in the Pacific Ocean — nicknamed the blob — resulted in increased levels of ozone above the Western US, researchers have found.

The blob — which at its peak covered roughly 9 million square kilometres (3.5 million square miles) from Mexico to Alaska — was assumed to be mainly messing with conditions in the ocean, but a new study has shown that it had a lasting affect on air quality too.

“Ultimately, it all links back to the blob, which was the most unusual meteorological event we’ve had in decades,” says one of the team, Dan Jaffe from the University of Washington Bothell.

Read more

If climate change, nuclear weapons or Donald Trump don’t kill us first, there’s always artificial intelligence just waiting in the wings. It’s been a long time worry that when AI gains a certain level of autonomy it will see no use for humans or even perceive them as a threat. A new study by Google’s DeepMind lab may or may not ease those fears.

Read more

Nice write up. What is interesting is that most folks still have not fully understood the magnitude of quantum and how as well as why we will see it as the fundamental ingredient to all things and will be key in our efforts around singularity.


When it comes to studying transportation systems, stock markets and the weather, quantum mechanics is probably the last thing to come to mind. However, scientists at Australia’s Griffith University and Singapore’s Nanyang Technological University have just performed a ‘proof of principle’ experiment showing that when it comes to simulating such complex processes in the macroscopic world quantum mechanics can provide an unexpected advantage.

Griffith’s Professor Geoff Pryde, who led the project, says that such processes could be simulated using a “quantum hard drive”, much smaller than the required for conventional simulations.

“Stephen Hawking once stated that the 21st century is the ‘century of complexity’, as many of today’s most pressing problems, such as understanding climate change or designing transportation system, involve huge networks of interacting components,” he says.

Most of us probably don’t think too much about the foodstuffs we buy in the supermarket. But behind the scenes, today’s food production system relies on a centralized, industrial-scale supply chain that’s still dependent upon soil-based agriculture for the majority of our food crops.

In many instances, that means that food has to travel long distances from farm to table, meaning that food has lost much of its freshness and nutritional value by the time it reaches your table. There’s also a growing awareness that this model isn’t sustainable: the pressures of increasing urbanization and loss of arable land, rising populations and the increased frequency of extreme weather events like droughts and floods — brought on by climate change — means that slowly but surely, we are going to have to change the way we grow our food.

There are some indications of this shift: the appearance of urban rooftop farms, an explosion of interest in automated hydroponic systems. The problem with all these systems is that their platforms are proprietary, and the lack of a common platform between them means these won’t necessarily scale up.

Read more

The inner edge of the habitable zone is the dividing line between peaches and cream and all out hell. Venus has likely seen both. The study of exo-solar systems like Wolf 1061 is key to understanding our own Venus.


New observations of the nearby star Wolf 1061, some 14 light years distant in Ophiuchus — already known to harbor three super-earths — should help planetary scientists better understand what went wrong with our own Venus.

Turns out hellishly-hot Venus-like worlds are quite common and early in the history of any given planetary system, such close-in terrestrial mass planets might even sport liquid water. But as their host stars evolve, the perilous inner edge of these extrasolar planetary systems’ habitable zones move decidedly outward.

As a star’s luminosity grows over time, such tenuous habitable zones can cause what might have been a promising climate to turn into a runaway greenhouse of the sort we see on Venus. With no liquid water at its surface, Venus is the very definition of inhospitable. That’s in contrast to a habitable clime where given the right atmospheric pressure and temperatures terrestrial mass planets can host temperate liquid water on their surfaces.

Yes, you read that right. The Global Challenges Foundation, founded by the Swedish billionaire László Szombatfalvy, has launched an international competition in order to find a better system for world governance. As Szombatfalvy writes in a letter published on the Foundation’s website:

The greatest threats we face today transcend national boundaries; they therefore need to be addressed jointly by all countries based on an increased realization of our mutual dependence. […] Our current international system – including but not limited to the United Nations — was set up in another era following the Second World War. It is no longer fit for purpose to deal with 21st century risks that can affect people anywhere in the world. We urgently need fresh new thinking in order to address the scale and gravity of today’s global challenges, which have outgrown the present system’s ability to handle them.

The Global Challenges Prize 2017: A New Shape is calling on individuals, groups of individuals, universities, companies or associations from anywhere in the world to submit proposals outlining an alternative world governance model – either by revising the present UN system, or by proposing completely new forms of governance. The new model should be able to effectively address some of the most pressing global problems (like climate change, population growth, extreme poverty) by making it possible for nations to make collectively binding, long-term decisions that take into account the interests of all those affected, including future generations.

Read more

Concerned that scientific views are not being properly represented in Washington, a new nonprofit group wants to get more scientists elected. 314 Action, named after the first three digits of pi, wants scientists to embrace the political process, running for all levels of government. The group’s aim is to get as many scientists elected as possible in the 2018 elections.

314 Action sees particular urgency for its work due to the rise of anti-science rhetoric on the Hill, especially from the right. The current Republican standard bearer President Trump has questioned the idea that climate change is caused by humans and seemingly encouraged debunked anti-vaccination opinions. With the appointments Trump made so far, it’s hard to believe his administration will advance scientific causes.

The 314 Action group describes its members as people who come from the STEM community whose goals are to increase communication between STEM community and elected officials, to actually elect STEM-trained candidates to public office, to increase presence of STEM ideas through the media, and to prevent the U.S. from falling further and further behind the rest of the world in math and science education.

Read more