БЛОГ

Archive for the ‘climatology’ category: Page 78

Mar 26, 2022

Researchers develop PERC solar cells with 100% recycled silicon

Posted by in categories: climatology, economics, solar power, sustainability

The installations of photovoltaic (PV) solar modules are growing extremely fast. As a result of the increase, the volume of discarded solar modules that end up on the recycling market annually will grow at the same rate in the near future. Currently, the aluminum, glass, and copper of the discarded modules are reprocessed; however, the silicon solar cells are not.

Now, researchers from the Fraunhofer Center for Silicon Photovoltaics CSP and the Fraunhofer Institute for Solar Energy Systems ISE, together with the largest German recycling company for PV modules, Reiling GmbH & Co. KG, have built new PERC solar cells with 100% crystalline silicon recycled from end-of-life photovoltaic panels.

The team has developed a process for recovering the silicon material with funding from the German Federal Ministry for Economic Affairs and Climate BMWK. The technique is claimed to recycle silicon from different types of crystalline silicon PV modules, regardless of manufacturer and origin.

Mar 24, 2022

How Can Quantum Computing Change the World?

Posted by in categories: business, climatology, computing, health, quantum physics

Every industry will be affected by quantum computing. They will alter the way business is done and the security systems in place which protect data, how we battle illnesses and create new materials, as well as how we tackle health and climate challenges.

As the race to build the first commercially functional quantum computer heats up, here we discuss a handful of the ways quantum computing will alter our world.

Mar 20, 2022

Sonoma County Airport Launches Solar Power Systems

Posted by in categories: climatology, government, solar power, sustainability

The Charles M. Schulz Sonoma County Airport had two solar power systems installed onsite and made them live in February. Over the course of their electricity-generating life spans, they will offset thousands of tons of CO2 emissions and potentially save millions of dollars.

Sonoma County has been hit particularly hard by wildfires in the last several years. These natural disasters occur with some regularity on their own, but many believe the latest ones are connected to the effects of climate change. The county has been experiencing higher temperatures and droughts as well. As a result of these challenges, Sonoma County’s government set a goal for the county to be carbon neutral by 2030. The airport solar power installations fit within the carbon-free plan. (The California state government has a goal for California to be operating on clean, carbon-free electricity by 2045.)

Jon Stout, the Sonoma Airport Manager, and Rachel McLaughlin, ForeFront Power’s Vice President of Sales & Marketing, provided some insights to CleanTechnica about the new solar power systems. (The last three answers are from ForeFront.)

Mar 20, 2022

Going Around In Circles With Homemade Arcade Classic Cyclone

Posted by in categories: climatology, entertainment, habitats

The classic arcade game Cyclone has attracted many players, along with their coins, thanks to its simple yet addictive gameplay. In its most basic form it consists of a light racing around a circular track, which the player then has to stop at exactly the right place. Arduino enthusiast [mircemk] made a home version of this game, which allows addicts to keep playing forever without running out of quarters.

Instead of an arcade cabinet, this smaller version has an upright 3D-printed ring that holds 60 WS2812 LEDs. A further six in the center of the ring act as a score counter. An Arduino in the base drives the LEDs and runs the game, which is based on an earlier iteration built by [oKeeg]. An interesting addition is a large homemade “arcade button”, which is large and sturdy enough to withstand any abuse inflicted on it by a frustrated player.

Continue reading “Going Around In Circles With Homemade Arcade Classic Cyclone” »

Mar 18, 2022

Conversion process turns carbon dioxide into cash

Posted by in categories: chemistry, climatology, economics, sustainability

Engineers at the University of Cincinnati have developed a promising electrochemical system to convert emissions from chemical and power plants into useful products while addressing climate change.

UC College of Engineering and Applied Science assistant professor Jingjie Wu and his students used a two-step cascade reaction to convert to and then into , a chemical used in everything from food packaging to tires.

“The world is in a transition to a low-carbon economy. Carbon dioxide is primarily emitted from energy and chemical industries. We convert carbon dioxide into ethylene to reduce the .” Wu said. “The research idea is inspired by the basic principle of the plug flow reactor. We borrowed the reactor design principle in our segmented electrodes design for the two-stage conversion.”

Mar 17, 2022

1st image from NASA’s new IXPE X-ray telescope looks like a ball of purple lightning

Posted by in categories: climatology, cosmology

NASA’s newly-launched X-ray hunting probe has snapped its first science image and — wow — it’s spectacular.

The Imaging X-ray Polarimetry Explorer (IXPE) probe launched Dec. 9, 2021, on a mission to observe objects like black holes and neutron stars in X-ray light, shedding much-anticipated light on the inner workings of the cosmos. The probe spent its first month in space checking out its various systems to get ready to capture its first images, and now the IXPE team has released its very first science image.

Mar 16, 2022

Billionaire Space Tourism Has Become Insufferable

Posted by in categories: biotech/medical, climatology, finance, government, space travel, sustainability

Last summer, at a time when the pandemic had strained many people’s finances, inflation was rising and unemployment was still high, the sight of the richest man in the world joyriding in space hit a nerve. On July 20 Amazon founder Jeff Bezos rode to the edge of space onboard a rocket built by his company Blue Origin. A few weeks earlier ProPublica had revealed that he did not pay any income taxes for two years, and in other years he paid a tax rate of just 0.98 percent. To many watching, it rang hollow when Bezos thanked Amazon’s workers, whose low-paid labor had enriched him enough to start his own rocket company, even though Amazon had quashed workers’ efforts to unionize several months before. The fact that another billionaire, Richard Branson, had also launched himself onboard his own company’s rocket just a week earlier did not help.

COVID changed many people’s willingness to shrug off the excesses of the rich. The pandemic drew an impossible-to-ignore distinction between those who can literally escape our world and the rest of us stuck on the ground confronting the ills of Earth: racism, climate change, global diseases. Even several members of Congress expressed their disapproval of Bezos. “Space travel isn’t a tax-free holiday for the wealthy,” said Representative Earl Blumenauer of Oregon. Bezos and Branson putting the spotlight on themselves as passengers served to downplay the work that hundreds of scientists and engineers at Blue Origin and Virgin Galactic had put into designing, building and testing their spacecraft. It also masked the reality that advances in private spaceflight really could eventually pay off in greater access to space for all and more opportunities for scientific research that could benefit everyone. All their flights did was give the impression that space—historically seen as a brave pursuit for the good of all humankind—has just become another playground for the 0.0000001 percent.

Mar 14, 2022

New Thinking Is Needed to Get Us Out of the Many Fixes We Are In

Posted by in categories: climatology, governance, sustainability

New governance models and new ways for us to interact are needed to help address existential challenges like climate change.

Mar 11, 2022

Stronger and Faster Than Lightning: Scientists Achieve Rare Quantum State in Polycrystals

Posted by in categories: chemistry, climatology, particle physics, quantum physics

Scientists from the Max Planck Institute for Polymer Research, Paderborn University, and the University of Konstanz have succeeded in achieving a rare quantum state. They are the first to have demonstrated Wannier-Stark localization in a polycrystalline substance. Predicted around 80 years ago, the effect has only recently been proven — in a monocrystal. Until now, researchers assumed this localization to be possible only in such monocrystalline substances which are very complicated to produce. The new findings represent a breakthrough in the field of physics and could in future give rise to new optical modulators, for example, that can be used in information technologies based on light, among other things. The physicists have published their findings in the well-respected technical journal, Nature Communications.

Stronger and faster than lightning

The atoms of a crystal are arranged in a three-dimensional grid, held together by chemical bonds. These bonds can, however, be dissolved by very strong electric fields which displace atoms, even going so far as to introduce so much energy into the crystal that it is destroyed. This is what happens when lightning strikes and materials liquefy, vaporize or combust, for example. To demonstrate Wannier-Stark localization, the scientists’ experiments involved setting up electric fields of several million volts per centimeter, much stronger than the fields involved in lightning strikes. During this process, the electronic system of a solid — in this case, a polycrystal — is forced far from a state of equilibrium for a very short time. Wannier-Stark localization involves virtually shutting down some of the chemical bonds temporarily. This state can only be maintained for less than a picosecond — one millionth of one millionth of a second — without destroying the substance.

Mar 11, 2022

Future Evolution: How Will Humans Change in the Next 10,000 Years?

Posted by in categories: asteroid/comet impacts, climatology, evolution, existential risks

READER QUESTION: If humans don’t die out in a climate apocalypse or asteroid impact in the next 10,000 years, are we likely to evolve further into a more advanced species than what we are at the moment? Harry Bonas, 57, Nigeria

Humanity is the unlikely result of four billion years of evolution.

From self-replicating molecules in Archean seas, to eyeless fish in the Cambrian deep, to mammals scurrying from dinosaurs in the dark, and then, finally, improbably, ourselves—evolution shaped us.

Page 78 of 158First7576777879808182Last