Toggle light / dark theme

Physicists at Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have created a compact laser that emits extremely bright, short pulses of light in a useful but difficult-to-achieve wavelength range, packing the performance of larger photonic devices onto a single chip.

Published in Nature, the research is the first demonstration of an on-chip, picosecond, mid-infrared laser pulse generator that requires no external components to operate.

The device can make what’s called an , a spectrum of light consisting of equally spaced frequency lines (like a comb), used today in precision measurements. The new laser chip could one day speed the creation of highly sensitive, broad-spectrum gas sensors for environmental monitoring, or new types of spectroscopy tools for medical imaging.

Year 2021 face_with_colon_three


Communication between brain activity and computers, known as brain-computer interface or BCI, has been used in clinical trials to monitor epilepsy and other brain disorders. BCI has also shown promise as a technology to enable a user to move a prosthesis simply by neural commands. Tapping into the basic BCI concept would make smart phones smarter than ever.

Research has zeroed in on retrofitting wireless earbuds to detect neural signals. The data would then be transmitted to a smartphone via Bluetooth. Software at the smartphone end would translate different brain wave patterns into commands. The emerging technology is called Ear EEG.

Rikky Muller, Assistant Professor of Electrical Engineering and Computer Science, has refined the physical comfort of EEG earbuds and has demonstrated their ability to detect and record brain activity. With support from the Bakar Fellowship Program, she is building out several applications to establish Ear EEG as a new platform technology to support consumer and health monitoring apps.

The study notes, “These findings underscore the complexity of Europa’s plume activity. Our results provide a framework to explore various plume characteristics, including gas drag, particle size, initial ejection velocities, and gas production rates, and the resulting plume morphologies and deposition outcomes.”


How do the water vapor plumes on Jupiter’s icy moon, Europa, contribute to the interaction between the moon’s surface and subsurface environments? This is what a recent study published in The Planetary Science Journal hopes to address as a team of researchers investigated how gas drag could influence the direction of particles being emitted by Europa’s water vapor plumes, specifically regarding where they land on the surface, either near the plumes or farther out. This study has the potential to help scientists better understand the surface-subsurface interactions on Europa and what this could mean for finding life as we know it.

Artist’s illustration of Europa’s water vapor plumes. (Credit: NASA/ESA/K. Retherford/SWRI)

For the study, the researchers used a series of computer models to simulate how the speed and direction of dust particles emitted from the plumes could be influenced by a process called gas drag, which could decrease the speed and direction of dust particles exiting the plumes. In the end, the researchers found that gas drag greatly influences dust behavior, with smaller dust particles ranging in size from 0.001 to 0.1 micrometers becoming more spread out after eruption and larger dust particles ranging in size from 0.1 to 10 micrometers landing near the plume sites.

Supported by the U.S. National Science Foundation, physicists have revealed the presence of a previously unobserved type of subatomic phenomenon called a fractional exciton. Their findings confirm theoretical predictions of a quasiparticle with unique quantum properties that behaves as though it is made of equal fractions of opposite electric charges bound together by mutual attraction.

The discovery was supported by NSF through multiple grants and laboratory work performed at the NSF National High Magnetic Field Laboratory in Tallahassee, Florida. The results are published in Nature and show potential for developing new ways to improve how information is stored and manipulated at the quantum level, which could lead to faster and more reliable quantum computers.

“Our findings point toward an entirely new class of quantum particles that carry no overall charge but follow unique quantum statistics,” says Jia Li, leader of the research team and associate professor of physics at Brown University. “The most exciting part is that this discovery unlocks a range of novel quantum phases of matter, presenting a new frontier for future research, deepening our understanding of fundamental physics and even opening up new possibilities in quantum computation.”

Physicists at Harvard have developed a powerful new laser-on-a-chip that emits bright pulses in the mid-infrared spectrum – an elusive and highly useful light range for detecting gases and enabling new spectroscopic tools.

The device, which packs capabilities of much larger systems into a tiny chip, doesn’t need any external components. It merges breakthrough photonic design with quantum cascade laser tech and could soon revolutionize environmental monitoring and medical diagnostics by detecting thousands of light frequencies in one go.

Breakthrough in compact mid-infrared laser technology.

Modern brain–computer interfaces (BCI), utilizing electroencephalograms for bidirectional human–machine communication, face significant limitations from movement-vulnerable rigid sensors, inconsistent skin–electrode impedance, and bulky electronics, diminishing the system’s continuous use and portability. Here, we introduce motion artifact–controlled micro–brain sensors between hair strands, enabling ultralow impedance density on skin contact for long-term usable, persistent BCI with augmented reality (AR). An array of low-profile microstructured electrodes with a highly conductive polymer is seamlessly inserted into the space between hair follicles, offering high-fidelity neural signal capture for up to 12 h while maintaining the lowest contact impedance density (0.03 kΩ·cm−2) among reported articles. Implemented wireless BCI, detecting steady-state visually evoked potentials, offers 96.4% accuracy in signal classification with a train-free algorithm even during the subject’s excessive motions, including standing, walking, and running. A demonstration captures this system’s capability, showing AR-based video calling with hands-free controls using brain signals, transforming digital communication. Collectively, this research highlights the pivotal role of integrated sensors and flexible electronics technology in advancing BCI’s applications for interactive digital environments.

We’re closer than ever to being able to upload our minds and become “digitally immortal.” But should we?

❍ Subscribe to The Well on YouTube: https://bit.ly/welcometothewell.
❍ Up next: Michio Kaku: 3 mind-blowing predictions about the future • Michio Kaku: 3 mind-blowing predictio…

What if our minds could live after our bodies have died? What if mortality became obsolete? Steven Kotler, award-winning journalist and executive director of the Flow Research Collective, has studied these seemingly sci-fi ideas, and it turns out that they’re not so fictional, after all. In fact, mind-uploading technology is expected to be available as early as 2045.

“Digital immortality” would have its upsides; we could preserve the minds of modern geniuses and have their guidance through future conflicts. Or, alternatively, things could get dark, as we have never before interfered with such complex evolutionary processes. Kotler explains that the ability to store human personalities and consciousness on computers poses profound ethical and societal questions.

By developing and using this mind-uploading technology, we are simultaneously redefining what it means to be a human being, pushing the boundary between life, death, and whatever is in between. It seems, whether we’re ready or not, that it is going to happen soon.

The skin is the largest organ in the human body. It makes up around 15 percent of our body weight and protects us from pathogens, dehydration and temperature extremes. Skin diseases are therefore more than just unpleasant – they can quickly become dangerous for affected patients. Although conditions such as skin cancer, chronic wounds and autoimmune skin diseases are widespread, we often still don’t fully understand about why they develop and how we can treat them effectively.

To find answers to these questions, Empa researchers are working together with clinical partners on a model of human skin. The model will allow scientists to simulate skin diseases and thus better understand them. This is not a computer or plastic model. Rather, researchers from Empa’s Laboratory for Biomimetic Membranes and Textiles and its Laboratory for Biointerfaces aim to produce a living “artificial skin” that contains cells and emulates the layered and wrinkled structure of human skin. The project is part of the Swiss research initiative SKINTEGRITY.CH.

In order to recreate something as complex as skin, suitable building materials are needed. This is where Empa researchers have recently made progress: They have developed a hydrogel that meets the complex requirements while being easy to manufacture. The basis: gelatin from the skin of cold-water fish.