Toggle light / dark theme

There Are Over 700 Quintillion Planets In The Universe, But There’s Truly No Place Like Home

According to astrophysicist Erik Zackrisson’s computer model, there could be about 70 quintillion planets in the universe. However, most of these planets are vastly different from Earth — they tend to be larger, older, and not suited for life. Only around 63 exoplanets have been found in their stars’ habitable zones, making Earth potentially one of the few life-sustaining planets. This could explain Fermi’s paradox — the puzzling lack of evidence for extraterrestrial life. While we continue searching, Earth might be truly special.

After reading the article, Harry gained more than 55 upvotes with this comment: “If life developing on Earth the way it has is 1 in a billion, then this would imply that there is life on at least a billion other planets (?)”

The prevailing belief among astronomers is that the number of planets should at least match the number of stars. With 100 billion galaxies in the universe, each containing about a billion trillion stars, there should be an equally vast number of exoplanets, including Earth-like worlds — in theory.

A New Planet Is Now Our Closest Neighbor

The order of the planets is something most of us learn in school: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and (until 2006) Pluto.

So, you would be forgiven for thinking that as Earthlings, our closest planetary neighbor is Venus. And in a way, you would be right – at its nearest, Venus approaches Earth closer than any other planet in the Solar System. Likewise, its orbit is closer to our orbit than any other. However, in another sense, you would be wrong. At least, that is the argument put forward in an article published in PhysicsToday.

To identify our closest neighbor, engineers affiliated with NASA, Los Alamos National Observatory, and the US Army’s Engineer Research Development Center built a computer simulation to calculate the average proximity of Earth to its three nearest planets (Mars, Venus, and Mercury) over a 10,000-year-period. Because of the way the planets align during their respective orbits, the model shows that Earth spends more time nearer to Mercury than either Venus or Mars.

Defibrillation devices can still save lives using 1,000 times less electricity, optimized model finds

In a paper published in Chaos, researchers from Sergio Arboleda University in Bogotá, Colombia, and the Georgia Institute of Technology in Atlanta used an electrophysiological computer model of the heart’s electrical circuits to examine the effect of the applied voltage field in multiple fibrillation-defibrillation scenarios. They discovered far less energy is needed than is currently used in state-of-the-art defibrillation techniques.

Software design and development tools for radiation-hardened embedded computing introduced by BAE Systems

Related: Radiation-hardened space electronics enter the multi-core era

The approach mitigates risk and enables easy adoption. The RAD510 computer board will launch in industry-standard 3U form factor and use software compatible with the BAE Systems RAD750 and RAD5545 computer boards.

The RAD510 embedded computing board is for the challenging environment of radiation and extreme temperatures of space. It is built on the BAE Systems RAD750 computer board that has enabled more than 100 satellites.

US researchers show GenAI lacks coherent world model understanding

Researchers suggest a new approach is needed to build LLMs with accurate world models.


LLMs have shown that they can excel at various things – like writing, generating computer programs, and more activities.

This can make it seem like these models are learning some general truths about the world, but the study found out otherwise.

For the new study, the researchers found that a popular type of GenAI model can provide turn-by-turn driving directions in New York City with near-perfect accuracy — without having formed an accurate internal map of the city.

A New Paradigm in Quantum Physics

In a study published in Physical Review Letters, researchers at the Center for Computational Quantum Physics (CCQ) at the Flatiron Institute have revealed that the quantum problem they solved, which involved a specific two-dimensional quantum system of flipping magnets, exhibits a behavior known as confinement. This problem explains why they defeated the quantum computer in its own game. Only one-dimensional systems had previously exhibited this behavior in quantum condensed matter physics.

The researchers revealed earlier this year that they had completely surpassed a quantum computer at a task that some believed could only be completed by quantum computers by using a classical computer and complex mathematical models.

According to lead author Joseph Tindall, a research fellow at the CCQ, this surprising discovery is giving researchers a framework for evaluating novel quantum simulations and aiding in their understanding of the boundary between quantum and classical computers’ capabilities.

Dell Unveils its First Quantum Computing Solution with IonQ

Dell Technologies expands its computing (HPC) portfolio, offering powerful solutions to help organizations quickly innovate with confidence.

With a range of new offers, Dell delivers technologies and services to help power demanding applications while making HPC capabilities more accessible to businesses.

Dell PowerEdge servers champion advanced modeling and datasets.

/* */