Toggle light / dark theme

Physicist Federico Faggin is none other than the inventor of both the microprocessor and silicon gate technology, which spawned the explosive progress in computer technology we have witnessed over the past five decades. He is also probably the world’s most well rounded idealist alive. Mr. Faggin approaches idealism from both a deeply technical and a deeply personal, experiential perspective. In this interview, Essentia Foundation’s Natalia Vorontsova engages in an open, free-ranging but very accessible conversation with Mr. Faggin.

Copyright © 2022 by Essentia Foundation. All rights reserved.
https://www.essentiafoundation.org.

Thumbnail inspiration image: Vecteezy.com

A research group from Tohoku University and RIKEN has developed a high-speed, high-sensitivity terahertz-wave detector operating at room temperature, paving the way for advancements in the development of next generation 6G/7G technology.

Details of their breakthrough were published in the journal Nanophotonics on November 9, 2023.

The enhancement of current communications speeds will rely on terahertz (THz) . THz waves are within the THz range, which falls between the microwave and infrared portions of the electromagnetic spectrum, typically spanning frequencies from 300 gigahertz to 3 THz.

Quantum computers have the potential to outperform conventional computers on some tasks, including complex optimization problems. However, quantum computers are also vulnerable to noise, which can lead to computational errors.

Engineers have been trying to devise fault-tolerant approaches that could be more resistant to noise and could thus be scaled up more robustly. One common approach to attain fault-tolerance is the preparation of magic states, which introduce so-called non-Clifford gates.

Researchers at University of Science and Technology of China, the Henan Key Laboratory of Quantum Information and Cryptography and the Hefei National Laboratory recently demonstrated the preparation of a logical magic state with fidelity beyond the distillation threshold on a superconducting quantum processor. Their paper, published in Physical Review Letters, outlines a viable and effective strategy to generate high-fidelity logical magic states, an approach to realize fault-tolerant quantum computing.

The World Wide Web was first tested on Christmas Day in 1990. Tim Berners-Lee and Robert Cailliau set up successful communication between a web browser & server via the Internet.


Tim Berners-Lee, a British scientist, invented the World Wide Web (WWW) in 1989, while working at CERN. The Web was originally conceived and developed to meet the demand for automated information-sharing between scientists in universities and institutes around the world.

CERN is not an isolated laboratory, but rather the focal point for an extensive community that includes more than 17 000 scientists from over 100 countries. Although they typically spend some time on the CERN site, the scientists usually work at universities and national laboratories in their home countries. Reliable communication tools are therefore essential.

The basic idea of the WWW was to merge the evolving technologies of computers, data networks and hypertext into a powerful and easy to use global information system.

JERUSALEM, Dec 26 (Reuters) — Israel’s government agreed to give Intel (INTC.O) a $3.2 billion grant for a new $25 billion chip plant it plans to build in southern Israel, both sides said on Tuesday, in what is the largest investment ever by a company in Israel.

The news comes as Israel remains locked in a war with Palestinian militant group Hamas in the wake of the Oct. 7 Hamas attack on Israel. It also is a big show of support by a major U.S. company and a generous offer by Israel’s government at a time when Washington has increased pressure on Israel to take further steps to minimise civilian harm in Gaza.

Shares of Intel, which has a bit less than 10% of its global workforce in Israel, opened up 2.73% at $49.28 on Nasdaq.

Researchers have experimentally demonstrated how to harness a property called negative capacitance for a new type of transistor that could reduce power consumption, validating a theory proposed in 2008 by a team at Purdue University.

The researchers used an extremely thin, or 2-D, layer of the semiconductor molybdenum disulfide to make a channel adjacent to a critical part of called the gate. Then they used a “ferroelectric material” called hafnium zirconium oxide to create a key component in the newly designed gate called a negative capacitor.

Capacitance, or the storage of electrical charge, normally has a positive value. However, using the ferroelectric material in a transistor’s gate allows for negative capacitance, which could result in far to operate a transistor. Such an innovation could bring more efficient devices that run longer on a battery charge.

A computer chip processes and stores information using two different devices. If engineers could combine these devices into one or put them next to each other, then there would be more space on a chip, making it faster and more powerful.

Purdue University engineers have developed a way that the millions of tiny switches used to process information—called transistors—could also store that information as one device.

The method, detailed in a paper published in Nature Electronics, accomplishes this by solving another problem: combining a transistor with higher-performing memory technology than is used in most computers, called ferroelectric RAM.