Toggle light / dark theme

Researchers at HZDR managed to generate wave-like excitations in a magnetic disk – so-called magnons – to specifically manipulate atomic-sized qubits in silicon carbide. This could open new possibilities for the transduction of information within quantum networks. Credit: HZDR / Mauricio Bejarano.

Researchers at HZDR have developed a new method to transduce quantum information using magnons, offering a promising approach to overcoming the challenges in quantum computing, particularly in enhancing qubit stability and communication efficiency.

Quantum computers promise to tackle some of the most challenging problems facing humanity today. While much attention has been directed towards the computation of quantum information, the transduction of information within quantum networks is equally crucial in materializing the potential of this new technology.

Researchers from Tohoku University have created a theoretical framework for an advanced spin wave reservoir computing (RC) system that leverages spintronics. This innovation advances the field toward realizing energy-efficient, nanoscale computing with unparalleled computational power.

Details of their findings were published in npj Spintronics on March 1, 2024.

A recent study by scientists from the University of California, Irvine and Los Alamos National Laboratory, published in Nature Communications, reveals a breakthrough method for transforming everyday materials, such as glass, into materials scientists can use to make quantum computers.

“The materials we made are substances that exhibit unique electrical or quantum properties because of their specific atomic shapes or structures,” said Luis A. Jauregui, professor of physics & astronomy at UCI and lead author of the new paper. “Imagine if we could transform glass, typically considered an insulating material, and convert it into efficient conductors akin to copper. That’s what we’ve done.”

Conventional computers use silicon as a conductor, but silicon has limits. Quantum computers stand to help bypass these limits, and methods like those described in the new study will help quantum computers become an everyday reality.

The first person with Neuralink’s computer-linked chip implanted in the surface of their brain showed off their “telekinetic” online chess-playing skills while discussing the “life-changing” procedure for the first time in a surprise livestream.

Noland Arbaugh, a 29-year-old with quadriplegia (or paralysis that affects the body from the neck down), volunteered to have the device implanted as part of Neuralink’s ongoing trial of the technology. Until now, his identity had remained a closely guarded secret.

The first patient of Elon Musk’s Neuralink has been presented to the public. Noland Arbaugh had all but given up playing Civilization VI ever since a diving accident dislocated two vertebrae in his cervical spinal cord, leaving him paralyzed from the shoulders down.

When confined to his wheel chair, the 29-year-old American is totally dependent on the care of his parents, who need to shift his weight ever few hours to avoid pressure sores from sitting too long in the same position.

Moving a cursor on a display furthermore required the use of a mouth stick, a specialized assistive device used by quadriplegics.

From NVIDIA efficient video diffusion models via content-frame motion-latent decomposition.

From NVIDIA

Efficient video diffusion models via content-frame motion-latent decomposition.

Video diffusion models have recently made great progress in generation quality, but are still limited by the high memory and computational requirements.


Join the discussion on this paper page.