Toggle light / dark theme

A breakthrough by UChicago scientists enables greener microfabrication

Imagine being able to create incredibly tiny structures with the same ease and sustainability as printing on paper.

This is the frontier of microfabrication—the process of making microscopic structures that are crucial for the operation of everything from computer chips to medical devices.


New, more sustainable process uses water instead of harmful chemicals.

250,000 DNA sequences successfully store 11.28 MB of MRI information

The team says that DNA — known for its stability and density — could be an ideal candidate for MRI data storage.

Brain MRI scans provide invaluable insights into our bodies.


Interestingly, the team successfully encoded 11.28 megabytes of brain MRI data into roughly 250,000 DNA sequences. This translates to a data density of 2.39 bits per base.

The encoded oligos, which are the DNA sequences containing the MRI data, are stored in a “dry powder form.” The oligos weigh only 3 micrograms, which is incredibly small. This suggests that a vast amount of data can be stored in a tiny space.

It can “support over 300 reads under current technical standards.”

Quantum Entanglement between Optical and Microwave Photonic Qubits

Entanglement is the essential resource that enables quantum information and processing tasks. Historically, sources of entangled light were developed as experimental tools to test the foundations of quantum mechanics. In this study, we make an extreme version of such a source, where the entangled photons are separated in energy by 5 orders of magnitude, to engineer a quantum interconnect between light and superconducting microwave devices.

Our entanglement source is an integrated chip-scale device with a specially designed acoustic transducer, whose vibrations can simultaneously modulate the frequency of an optical cavity and generate an oscillating voltage in a superconducting electrical resonator. We operate this transducer at cryogenic temperatures to maintain the acoustic and electrical components of the device close to their quantum ground state and excite it with laser pulses to generate entangled pairs. We measure statistical correlations between the optical and microwave emission to verify entanglement.

Our work demonstrates a fundamental prerequisite for a quantum information processing architecture in which room-temperature optical communication links may be used to network superconducting quantum-bit processors in distant cryogenic setups.

Researchers harness liquid crystal structures to design simple, yet versatile bifocal lenses

Researchers have developed a new type of bifocal lens that offers a simple way to achieve two foci (or spots) with intensities that can be adjusted by applying external voltage. The lenses, which use two layers of liquid crystal structures, could be useful for various applications such as optical interconnections, biological imaging, augmented/virtual reality devices and optical computing.

DOOM can now run on a quantum computer with Quandoom port — seminal FPS blood and gore mixed with spooky action

DOOM has been ported to quantum computers, marking another milestone for this seminal 3D gaming title. However, the coder behind this feat admits that there is currently no quantum computer capable of executing (playing) this code right now. All is not lost, though, as Quandoom can run on a classical computer, even a modest laptop, using a lightweight QASM simulator.

Barcelona ICFO-based Quantum Information PhD student Luke Mortimer, AKA Lumorti, is behind this newest port of DOOM. In the ReadMe file accompanying the Quandoom 1.0.0 release, Lumorti quips that “It is a well-known fact that all useful computational devices ever created are capable of running DOOM,” and humorously suggests that Quandoom may be the first practical use found for quantum computers.

/* */