Toggle light / dark theme

Techno-futurists are selling an interplanetary paradise for the posthuman generation—they just forgot about the rest of us

Inside the cult of TESCREALism and the dangerous fantasies of Silicon Valley’s self-appointed demigods, for Document’s Spring/Summer 2024 issue.

As legend has it, Steve Jobs once asked Larry Kenyon, an engineer tasked with developing the Mac computer, to reduce its boot time by 10 seconds. Kenyon said that was impossible. “What if it would save a person’s life?” Jobs asked. Then, he went to a whiteboard and laid out an equation: If 5 million users spent an additional 10 seconds waiting for the computer to start, the total hours wasted would be equivalent to 100 human lifetimes every year. Kenyon shaved 28 seconds off the boot time in a matter of weeks.

Often cited as an example of the late CEO’s “reality distortion field,” this anecdote illustrates the combination of charisma, hyperbole, and marketing with which Jobs convinced his disciples to believe almost anything—elevating himself to divine status and creating “a cult of personality for capitalists,” as Mark Cohen put it in an article about his death for the Australian Broadcasting Corporation. In helping to push the myth of the genius tech founder into the cultural mainstream, Jobs laid the groundwork for future generations of Silicon Valley investors and entrepreneurs who have, amid the global decline of organized religion, become our secular messiahs. They preach from the mounts of Google and Meta, selling the public on digital technology’s saving grace, its righteous ability to reshape the world.

In the Beginning, There Was Computation

We are made out of functions, and those functions are made out of functions, all the way down.

Even bacteria—the simplest life forms surviving today—are a product of many subsequent evolutionary steps.


IX. Ecology

Fundamentally, life is code, and code is life. More precisely, individual computational instructions are the irreducible quanta of life—the minimal replicating set of entities, however immaterial and abstract they may seem, that come together to form bigger, more stable, and more complex replicators, in ever-ascending symbiotic cascades.

In the toy universe of bff, the elementary instructions are the seven special characters “+ –, [ ]”. On the primordial sea floor, geothermally driven chemical reactions that could catalyze further chemical reactions may have played the same role. Our growing understanding of life as a self-reinforcing dynamical process boils down not to things, but to networks of mutually beneficial relationships. At every scale, life is an ecology.

Scientists invent a hot-emitter transistor for future high-performance, low-power, multifunctional devices

Transistors, the building blocks of integrated circuits, face growing challenges as their size decreases. Developing transistors that use novel operating principles has become crucial to enhancing circuit performance.

Hot , which utilize the excess kinetic energy of carriers, have the potential to improve the speed and functionality of transistors. However, their performance has been limited by how hot carriers have traditionally been generated.

A team of researchers led by Prof. Liu Chi, Prof. Sun Dongming, and Prof. CHeng Huiming from the Institute of Metal Research (IMR) of the Chinese Academy of Sciences has proposed a novel hot carrier generation mechanism called stimulated emission of heated carriers (SEHC).

For first time, DNA tech offers both data storage and computing functions

Researchers from North Carolina State University and Johns Hopkins University have demonstrated a technology capable of a suite of data storage and computing functions—repeatedly storing, retrieving, computing, erasing or rewriting data—that uses DNA rather than conventional electronics. Previous DNA data storage and computing technologies could complete some but not all of these tasks.

Molecular wires with a twist

From the high-voltage wires that carry electricity over long distances, to the tungsten filaments in our incandescent lights, we may have become accustomed to thinking that electrical conductors are always made of metal. But for decades, scientists have been working on advanced materials based on carbon-based oligomer chains that can also conduct electricity. These include the organic light-emitting devices found in some modern smartphones and computers.

In quantum mechanics, electrons are not just point particles with definite positions, but rather can become ‘delocalized’ over a region. A molecule with a long stretch of alternating single-and double-bonds is said to have pi-conjugation, and conductive polymers operate by allowing delocalized electrons to hop between pi-conjugated regions – somewhat like a frog hopping between nearby puddles. However, the efficiency of this process is limited by differences in the energy levels of adjacent regions.

Fabricating oligomers and polymers with more uniform energy levels can lead to higher electrical conductivity, which is necessary for the development of new practical organic electronics, or even single-molecule wires.

Astronomers explain Rapid Formation of Organic Macromolecules in Protoplanetary Disks around Young Stars

Computer modeling shows how macromolecules form quickly in gas & dust disks around young stars, aiding understanding of exoplanet.

Astronomers explain #Rapid #Formation of #Organic #Macromolecules in #Protoplanetary #Disks around #Young #Stars.


An international team of researchers led by the University of Bern has used observation-based computer modeling to find an explanation for how macromolecules can form in a short time in disks of gas and dust around young stars. These findings could be crucial for understanding how habitability develops around different types of exoplanets and stars.

Organic macromolecules are regarded as the building blocks of life, as they are of crucial importance for the life-friendly carbon and nitrogen composition of the earth.

Planetary scientists have long assumed that the organic macromolecules that make the Earth suitable for life come from so-called chondrites. Chondrites are rocky building blocks from which the Earth was formed around 4.6 billion years ago and which we know today as meteorites.

Computer scientists discover vulnerabilities in a popular security protocol

A widely used security protocol that dates back to the days of dial-up internet has vulnerabilities that could expose large numbers of networked devices to an attack and allow an attacker to gain control of traffic on an organization’s network.

A research team led by University of California San Diego computer scientists investigated the Remote Authentication Dial-In User Service (RADIUS) protocol and found a vulnerability they call Blast-RADIUS that has been present for decades. RADIUS, designed in 1991, allows networked devices such as routers, switches or mobile roaming gear to use a to validate login or other credentials.

This is a common set-up in enterprise and because it allows credentials to be centrally managed. As a result, RADIUS is a critical part of modern telecommunications and enterprise networks; in large enterprises, it may control access to tens of thousands of switches.

Next-Gen Spectroscopy: New Tunable Laser Method Achieves Unprecedented Precision

Innovative diode laser spectroscopy provides precise monitoring of the color changes in the sweeping laser at each moment, establishing new benchmarks for frequency metrology and practical applications.

Since the laser’s debut in the 1960s, laser spectroscopy has evolved into a crucial technique for investigating the intricate structures and behaviors of atoms and molecules. Advances in laser technology have significantly expanded its potential. Laser spectroscopy primarily consists of two key types: frequency comb-based laser spectroscopy and tunable continuous-wave (CW) laser spectroscopy.

Comb-based laser spectroscopy enables extremely precise frequency measurements, with an accuracy of up to 18 digits. This remarkable precision led to a Nobel Prize in Physics in 2005 and has applications in optical clocks, gravity sensing, and the search for dark matter. Frequency combs also enable high-precision, high-speed broadband spectroscopy because they combine large bandwidth with high spectral resolution.

/* */