БЛОГ

Archive for the ‘computing’ category: Page 237

Nov 8, 2022

100 Times Longer Than Previous Benchmarks — A Quantum Breakthrough

Posted by in categories: computing, quantum physics

On these timescales, a blink of an eye — one-tenth of a second — seems like eternity.

Researchers from the University of New South Wales have now broken new ground in demonstrating that ‘spin qubits,’ which are the fundamental informational units of quantum computers, can store data for up to two milliseconds. The accomplishment is 100 times longer than prior benchmarks in the same quantum processor for what is known as “coherence time,” the amount of time qubits can be manipulated in increasingly complicated calculations.

Nov 8, 2022

Digital Doubles and Second Selves

Posted by in categories: augmented reality, automation, big data, computing, cyborgs, evolution, futurism, information science, innovation, internet, life extension, machine learning, neuroscience, posthumanism, robotics/AI, singularity, software, supercomputing

This time I come to talk about a new concept in this Age of Artificial Intelligence and the already insipid world of Social Networks. Initially, quite a few years ago, I named it “Counterpart” (long before the TV series “Counterpart” and “Black Mirror”, or even the movie “Transcendence”).

It was the essence of the ETER9 Project that was taking shape in my head.

Over the years and also with the evolution of technologies — and of the human being himself —, the concept “Counterpart” has been getting better and, with each passing day, it makes more sense!

Imagine a purely digital receptacle with the basics inside, like that Intermediate Software (BIOS(1)) that computers have between the Hardware and the Operating System. That receptacle waits for you. One way or another, it waits patiently for you, as if waiting for a Soul to come alive in the ether of digital existence.

Continue reading “Digital Doubles and Second Selves” »

Nov 8, 2022

Scientists Tap Into Biology’s ‘Mirror Dimension’ to Create Ultra-Strong Synthetic RNA

Posted by in categories: biotech/medical, computing, genetics

Even more daring, biology’s “mirror dimension” may be a springboard to engineer synthetic life forms that exist outside of nature, but are literal reflections of ourselves. To rephrase: building a mirror-image version of biology means rewriting the fundamental operating system of life.

Sound a bit too sci-fi? Let me explain. Similar to how our left hand can’t wear a right-hand glove, the building blocks of life—DNA, RNA, and proteins—are etched into specific 3D structures. Flip them around, as if reflected by a mirror, and they can no longer function inside the body. Scientists aren’t yet sure why nature picked just one shape out of two potential mirror images. But they’re ready to test it out.

A new study in Science made strides by reworking parts of the body’s protein-making machine into its mirror image. At the center is a structure called the ribosome, which intakes genetic code and translates it into amino acids—the Lego blocks for all proteins. The ribosome is an iconic cellular architecture, fused from two main molecular components: RNA and proteins.

Nov 8, 2022

People with speech paralysis can now talk using this intelligent spelling device

Posted by in categories: biotech/medical, computing, cyborgs, neuroscience

It gives new meaning to the phrase “speak your mind.

Do you remember how legendary cosmologist Stephen Hawking communicated using his special screen-equipped chair? Well, that was a brain-computer interface (BCI), a device that allows a person to communicate using their brain signals.

Continue reading “People with speech paralysis can now talk using this intelligent spelling device” »

Nov 7, 2022

Quantum Cryptography Is Unbreakable. So Is Human Ingenuity

Posted by in categories: business, computing, encryption, government, internet, mathematics, privacy, quantum physics, security


face_with_colon_three circa 2016.


Two basic types of encryption schemes are used on the internet today. One, known as symmetric-key cryptography, follows the same pattern that people have been using to send secret messages for thousands of years. If Alice wants to send Bob a secret message, they start by getting together somewhere they can’t be overheard and agree on a secret key; later, when they are separated, they can use this key to send messages that Eve the eavesdropper can’t understand even if she overhears them. This is the sort of encryption used when you set up an online account with your neighborhood bank; you and your bank already know private information about each other, and use that information to set up a secret password to protect your messages.

The second scheme is called public-key cryptography, and it was invented only in the 1970s. As the name suggests, these are systems where Alice and Bob agree on their key, or part of it, by exchanging only public information. This is incredibly useful in modern electronic commerce: if you want to send your credit card number safely over the internet to Amazon, for instance, you don’t want to have to drive to their headquarters to have a secret meeting first. Public-key systems rely on the fact that some mathematical processes seem to be easy to do, but difficult to undo. For example, for Alice to take two large whole numbers and multiply them is relatively easy; for Eve to take the result and recover the original numbers seems much harder.

Public-key cryptography was invented by researchers at the Government Communications Headquarters (GCHQ) — the British equivalent (more or less) of the US National Security Agency (NSA) — who wanted to protect communications between a large number of people in a security organization. Their work was classified, and the British government neither used it nor allowed it to be released to the public. The idea of electronic commerce apparently never occurred to them. A few years later, academic researchers at Stanford and MIT rediscovered public-key systems. This time they were thinking about the benefits that widespread cryptography could bring to everyday people, not least the ability to do business over computers.

Continue reading “Quantum Cryptography Is Unbreakable. So Is Human Ingenuity” »

Nov 7, 2022

Gate-tunable heterojunction tunnel triodes based on 2D metal selenide and 3D silicon

Posted by in categories: computing, materials

Electronics engineers worldwide are trying to improve the performance of devices, while also lowering their power consumption. Tunnel field-effect transistors (TFETs), an experimental class of transistors with a unique switching mechanism, could be a particularly promising solution for developing low-power electronics.

Despite their potential, most TFETs based on silicon and III-V heterojunctions exhibit low on-current densities and on/off current ratios in some modes of operation. Fabricating these transistors using 2D materials could help to improve electrostatic control, potentially increasing their on-current densities and on/off ratios.

Researchers at University of Pennsylvania, the Chinese Academy of Sciences, the National Institute of Standards and Technology, and the Air Force Research Laboratory have recently developed new heterojunction tunnel triodes based on van der Waals heterostructures formed from 2D metal selenide and 3D silicon. These triodes, presented in a paper published in Nature Electronics, could outperform other TFETs presented in the past in terms of on-current densities and on/off ratios.

Nov 7, 2022

Scientists Build Synthetic Molecular Machines That Can Read Data

Posted by in categories: chemistry, computing, genetics, nanotechnology

Turing’s machine should sound familiar for another reason. It’s similar to the way ribosomes read genetic code on ribbons of RNA to construct proteins.

Cellular factories are a kind of natural Turing machine. What Leigh’s team is after would work the same way but go beyond biochemistry. These microscopic Turing machines, or molecular computers, would allow engineers to write code for some physical output onto a synthetic molecular ribbon. Another molecule would travel along the ribbon, read (and one day write) the code, and output some specified action, like catalyzing a chemical reaction.

Now, Leigh’s team says they’ve built the first components of a molecular computer: A coded molecular ribbon and a mobile molecular reader of the code.

Nov 7, 2022

Quantum engineers improved the silicon chip performance by 100 times setting a new standard

Posted by in categories: computing, quantum physics

Their quantum computing processors can store information up to two milliseconds.

Researchers from the University of New South Wales have broken new ground in quantum computing by demonstrating that ‘spin qubits’- qubits where the information is stored in the spin momentum of an electron-can store data for up to two milliseconds, 100 times longer than previous benchmarks in the same quantum processor.

Classical computers work with bits—consisting of ones and zeroes—but a quantum computer uses quantum bits or qubits, which, on top of the ones and zeroes, also has a superposition where it can be a one and a zero at the same time.

Continue reading “Quantum engineers improved the silicon chip performance by 100 times setting a new standard” »

Nov 7, 2022

Wind-Propelled Flying Microchip Measures Air Pollution

Posted by in categories: biotech/medical, computing

Researchers have assembled the world’s smallest flying structure, a tiny microchip that travels like wind-dispersed seeds with onboard technology to track air pollution and airborne diseases.

Nov 7, 2022

Scientists Suggest Our Brains Work Like Quantum Computers

Posted by in categories: computing, neuroscience, quantum physics

A study conducted by scientists from Trinity College Dublin could suggest that quantum processes are involved in the functions of our brains.