Toggle light / dark theme

With millions of tons of human waste we could make mountains of graphene microchips :3.


A trio of researchers, two from the University of Chemistry and Technology, Praha 6, the other the University of Toronto, has demonstrated that chicken feces can be used to make graphene a better catalyst. In their paper published in the journal ACS Nano, Lu Wang, Zdenek Sofer and Martin Pumera argue that researchers churning out papers describing newly found dopants for graphene are not contributing to understanding graphene’s electrocatalytic abilities.

Graphene has been found to have conductivity and strength characteristics that make it a desirable material for use in commercial products. Some have suggested it might also make an excellent catalyst if the right dopant can be found. To that end, researchers have been testing various materials as dopants for graphene to find new ways to use graphene. In their paper, Pumera et al. argue that rather than simply testing materials one after another with graphene, researchers might make better use of their time by devising experiments designed to better understand the fundamentals of graphene’s electrocatalytic abilities. To drive their point home, they wondered if any “crap” they tested would work as a possible dopant—to find out, they tested chicken crap. They prepared samples of graphene oxide using two different methods, then combined each with chicken feces—they then used thermal exfoliation on the results to make graphene.

In a new video, Intel has demoed the video playback capability of its Meteor Lake iGPU and its Low-Power E-Cores.

Intel Meteor Lake iGPU Offers Smooth 8K60 Video Playback, 1080P Video Playback Also Possible On SOC Tile’s Low-Power E-Cores

The Intel Meteor Lake, 1st Gen Core Ultra, CPUs are composed of various IPs and architectures. The tiled architecture incorporates a range of technologies and Intel is showcasing the advantages that it brings with its next-gen CPU architectures. For this purpose, Intel demoed video playback on the Meteor Lake iGPU and its low-power E-Cores and the results are super interesting.

The 2023 Nobel Prize in Chemistry was awarded to three scientists who discovered and developed quantum dots, which are very small particles that can change color depending on their size. Quantum dots are tiny particles of a special kind of material called a semiconductor. They are so small that they behave differently from normal materials. They can absorb and emit light of different colors depending on their size and shape.

You can think of quantum dots as artificial atoms that can be made in a lab! They have some of the same properties as atoms, such as having discrete energy levels (meaning they can only exist in certain distinct energy states, and they cannot have energy values between these specific levels) and being able to form molecules with other quantum dots. But they also have some unique features that make them useful for many applications, such as displays, solar cells, sensors, and medicine, which I shall discuss later in this story!

To grasp the workings of quantum dots, a bit of quantum mechanics knowledge comes in handy. Quantum mechanics teaches us that these tiny entities can possess only specific amounts of energy, and they transition between these energy levels by absorbing or emitting light. The energy of this light is determined by the difference in energy levels. In typical materials like metals or plastics, energy levels are closely packed, forming continuous bands where electrons can move freely, resulting in less specific light absorption or emission. However, in semiconductors like silicon or cadmium selenide, there’s a gap between these bands known as the “band gap.” Electrons can only jump from one band to another by interacting with light having an energy level that precisely matches the band gap, making semiconductors valuable for creating devices like transistors and LEDs.

Ben Dixon, a researcher in the Optical and Quantum Communications Technology Group, explains how the process works: “First, you need to generate pairs of specific entangled qubits (called Bell states) and transmit them in different directions across the network link to two separate quantum repeaters, which capture and store these qubits. One of the quantum repeaters then does a two-qubit measurement between the transmitted and stored qubit and an arbitrary qubit that we want to send across the link in order to interconnect the remote quantum systems. The measurement results are communicated to the quantum repeater at the other end of the link; the repeater uses these results to turn the stored Bell state qubit into the arbitrary qubit. Lastly, the repeater can send the arbitrary qubit into the quantum system, thereby linking the two remote quantum systems.”

To retain the entangled states, the quantum repeater needs a way to store them — in essence, a memory. In 2020, collaborators at Harvard University demonstrated holding a qubit in a single silicon atom (trapped between two empty spaces left behind by removing two carbon atoms) in diamond. This silicon “vacancy” center in diamond is an attractive quantum memory option. Like other individual electrons, the outermost (valence) electron on the silicon atom can point either up or down, similar to a bar magnet with north and south poles. The direction that the electron points is known as its spin, and the two possible spin states, spin up or spin down, are akin to the ones and zeros used by computers to represent, process, and store information. Moreover, silicon’s valence electron can be manipulated with visible light to transfer and store a photonic qubit in the electron spin state. The Harvard researchers did exactly this; they patterned an optical waveguide (a structure that guides light in a desired direction) surrounded by a nanophotonic optical cavity to have a photon strongly interact with the silicon atom and impart its quantum state onto that atom. Collaborators at MIT then showed this basic functionality could work with multiple waveguides; they patterned eight waveguides and successfully generated silicon vacancies inside them all.

Lincoln Laboratory has since been applying quantum engineering to create a quantum memory module equipped with additional capabilities to operate as a quantum repeater. This engineering effort includes on-site custom diamond growth (with the Quantum Information and Integrated Nanosystems Group); the development of a scalable silicon-nanophotonics interposer (a chip that merges photonic and electronic functionalities) to control the silicon-vacancy qubit; and integration and packaging of the components into a system that can be cooled to the cryogenic temperatures needed for long-term memory storage. The current system has two memory modules, each capable of holding eight optical qubits.

Without full fault tolerance in quantum computers we will never practically get past 100 qubits but full fault tolerance will eventually open up the possibility of billions of qubits and beyond. In a Wright Brothers Kittyhawk moment for Quantum Computing, a fully fault-tolerant algorithm was executed on real qubits. They were only three qubits but this was never done on real qubits before.

This is the start of the fully fault tolerant age of quantum computers. For quantum computers to be the real deal of unlimited computing disruption then we needed full fault tolerance on real qubits.

Researchers have conducted trials using a software capable of detecting intricate details of emotions that remain hidden to the human eye.

The software, which uses an “artificial net” to map key features of the face, can evaluate the intensities of multiple different facial expressions simultaneously.

The University of Bristol and Manchester Metropolitan University team worked with Bristol’s Children of the 90s study participants to see how well could capture authentic human emotions amidst everyday family life. This included the use of videos taken at home, captured by headcams worn by babies during interactions with their .

Work has begun on the seventh and final primary mirror of the ground-based Giant Magellan Telescope, which is expected to provide four times the image resolution of previous observatories when completed.

Computer-generated image of the finished Giant Magellan Telescope.

Scientists in the United States have begun fabricating and polishing the seventh and final primary mirror of the Giant Magellan Telescope. This will eventually complete its 368 square metre light collecting surface – forming the largest, most technically challenging optical system in astronomical history. When combined, all seven mirrors will collect more light than any other telescope in existence, making it a truly next-generation observatory.

In a breakthrough for the futuristic field of quantum computing, researchers have implemented a basic arithmetic operation in a fault-tolerant manner on an actual quantum processor for the first time. In other words, they found a way to bring us closer to more reliable, powerful quantum computers less prone to errors or inaccuracies.

Quantum computers harness the bizarre properties of quantum physics to rapidly solve problems believed to be impossible for classical computers. By encoding information in quantum bits or “qubits,” they can perform computations in parallel, rather than sequentially as with normal bits.