Spintronics is a technology that utilizes the spin of electrons — in addition to their charge — in order to store and process information. Unlike traditional electronics, which rely on the movement of electrons to perform their functions, spintronics uses the intrinsic angular momentum of electrons to achieve the same results. Spintronics offers the potential to address some limitations of traditional, charge-based computing and it has the potential for developing new types of devices such as spin-based transistors and logic gates.
Category: computing – Page 297
In the year 1,808, French chemists Joseph-Louis Gay-Lussac and Louis-Jacques Thenard, and independently, English chemist Humphry Davy, discovered the fifth element of the periodic table—boron. In crystalline form, boron primarily possesses three polymorphs, i.e., three distinct unit cell configurations: α-rhombohedral, β-rhombohedral, and β-tetragonal, among 16 possible bulk allotropes.
The unique properties of this element have resulted in its use in numerous applications, including chemistry, materials science, life sciences, energy research and electronics. Moreover, based on studies conducted over the past decade, boron has significant potential for use in pharmaceutical drug design as it plays an essential role in bone growth and maintenance, wound healing, prevention of vitamin-D deficiency and other processes.
In the periodic table of elements, boron lies to the left of carbon, which causes boron to have similar valence orbitals but a shorter covalent radius. In contrast to carbon, which favors a 2D (two-dimensional) layered structure (aka graphite) in its bulk form, the bulk allotropes of boron are composed of B12 icosahedral cages. As a result, it was challenging to experimentally realize a 2D atomic network of boron, also known as borophene, until 2015.
Only by knowing the average number of friends each person has, scientists at Complexity Science Hub (CSH) were able to predict the group sizes of people in a computer game. For this purpose, they modeled the formation of social groups on an example from physics, namely the self-organization of particles with spin.
Sociologists have focused on how social groups are forming and the mechanism behind it for a long time. The urge to avoid stress, as well as homophily—the tendency of people to join groups with others who share similar features, traits, or opinions—have been observed in many different contexts.
“Although multiple models have been studied, little is known about how homophily and stress avoidance affect the formation of human groups, and in particular the size distribution of them—whether there are many small groups or few large ones, for example,” explains Jan Korbel from CSH and first author of the study. By using two contemporary fields from physics, called self-assembly and spin glasses, scientists now shed new light on social group formation.
Trapped ions have previously only been entangled in one and the same laboratory. Now, teams led by Tracy Northup and Ben Lanyon from the University of Innsbruck have entangled two ions over a distance of 230 meters.
The nodes of this network were housed in two labs at the Campus Technik to the west of Innsbruck, Austria. The experiment shows that trapped ions are a promising platform for future quantum networks that span cities and eventually continents.
Trapped ions are one of the leading systems to build quantum computers and other quantum technologies. To link multiple such quantum systems, interfaces are needed through which the quantum information can be transmitted.
White LEDs’ reign as the top light source may soon come to an end with the advent of a new alternative that offers superior directionality.
A photonic crystal or nanoantenna, a 2D structure with periodic arrangement of nano-sized particles, is being developed as a cutting-edge optical control technology. Upon exposure to light, combining a nanoantenna with a phosphor plate produces a harmonious mix of blue and yellow light.
White LEDs have already been improved upon in the form of white laser diodes, or LDs, which consist of yellow phosphors and blue LDs. While the blue LDs are highly directional, the yellow phosphors radiate in all directions, resulting in an undesired mixing of colors.
With some careful twisting and stacking, MIT physicists have revealed a new and exotic property in “magic-angle” graphene: superconductivity that can be turned on and off with an electric pulse, much like a light switch.
The discovery could lead to ultrafast, energy-efficient superconducting transistors for neuromorphic devices—electronics designed to operate in a way similar to the rapid on/off firing of neurons in the human brain.
Magic-angle graphene refers to a very particular stacking of graphene—an atom-thin material made from carbon atoms that are linked in a hexagonal pattern resembling chicken wire. When one sheet of graphene is stacked atop a second sheet at a precise “magic” angle, the twisted structure creates a slightly offset “moiré” pattern, or superlattice, that is able to support a host of surprising electronic behaviors.
As the field of Quantum Computing continues to grow, the need for University and advanced educated individuals to make up the Quantum Computing workforce has grown as well. Below is a list of Master’s Degree Programs in the Quantum Computing Field offered by Universities around the world, featuring programs that range from onsite to online, and from one to two years in duration.
University College London (UCL)
UCL offers an MSc. degree in Quantum Technologies, with a robust curriculum that features compulsory modules in Advanced Quantum Theory, Quantum Computation and Communication, Quantum Technologies, and an Individual Research Project, among other non-compulsory optional modules. Optional modules include Astronomical Spectroscopy, Materials and Energy Materials, Physics of the Earth, Physics of Advanced Materials, Theoretical Condensed Matter, Advanced Topics in Statistical Mechanics, and more.
Windows 11 vs XP Network Analysis on Wireshark. What websites does your new laptop secretly connect to?
Get Crowdsec (free): https://www.crowdsec.net/?mtm_campaign=PCSecMag-May22 (sponsor)
Buy the best antivirus: https://thepcsecuritychannel.com/best-antivirus.
Join the discussion on Discord: http://discord.tpsc.tech/
Get your business endpoints tested by us: http://tpsc.tech/
Contact us for business: https://thepcsecuritychannel.com/contact
The phone, tablet or laptop you’re reading this on is likely having its battery slowly drained because of a surprising and widespread manufacturing flaw, according to researchers in Halifax.
“This is something that is totally unexpected and something that probably no one thought of,” said Michael Metzger, an assistant professor at Dalhousie University.
The problem? Tiny pieces of tape that hold the battery components together are made from the wrong type of plastic.
Microsoft announced today that it added device isolation support to Microsoft Defender for Endpoint (MDE) on onboarded Linux devices.
Enterprise admins can manually isolate Linux machines enrolled as part of a public preview using the Microsoft 365 Defender portal or via API requests.
Once isolated, threat actors will no longer have a connection to the breached system, cutting off their control and blocking malicious activity like data theft.