БЛОГ

Archive for the ‘computing’ category: Page 313

Sep 11, 2022

IBM builds the world’s largest dilution refrigerator for quantum computers

Posted by in categories: computing, education, quantum physics

The company’s engineers said that the new device may not be slated for use with any of the current IBM Quantum processors but that building it taught them important lessons on how to overcome these challenges.

Sep 10, 2022

Brain–computer interfaces: tailoring neurotechnology to improve patients’ lives

Posted by in categories: biotech/medical, computing, neuroscience

Sumner Norman, chief neuroscientist at AE Studio, talks to Tami Freeman about the company’s work in brain–computer interfaces.

Sep 10, 2022

Future Computers Will Be Entirely Different

Posted by in categories: biological, computing, quantum physics

In this video I discuss 5 Types of Compute which can replace our traditional Computers in the Future.

Watch Next:
➞ Analog Compute: https://youtu.be/f4A85foHPZY
➞ Biological Compute: https://youtu.be/FuzoLdrRX5Q
➞ Compute with Light: https://youtu.be/mt8I71VUazw.
➞ Quantum Computers: https://youtu.be/j9eYQ_ggqJk.
➞ RF compute paper: https://www.researchgate.net/publication/345970494_Radio-Fre…c_Synapses.

Continue reading “Future Computers Will Be Entirely Different” »

Sep 9, 2022

Modified microwave oven cooks up next-gen semiconductors

Posted by in categories: computing, mobile phones

A household microwave oven modified by a Cornell engineering professor is helping to cook up the next generation of cellphones, computers and other electronics after the invention was shown to overcome a major challenge faced by the semiconductor industry.

The research is detailed in a paper published in Applied Physics Letters. The lead author is James Hwang, a research professor in the department of materials science and engineering.

As microchips continue to shrink, silicon must be doped, or mixed, with higher concentrations of phosphorus to produce the desired current. Semiconductor manufacturers are now approaching a critical limit in which heating the highly doped materials using traditional methods no longer produces consistently functional semiconductors.

Sep 9, 2022

The US puts an end to any plans Intel may have to make more chips in China

Posted by in category: computing

Update 8/9/22: This story previously referenced Intel’s fab in Dalian, China, which has since been sold to SK Hynix. Intel continues to operate assembly plants in Chengdu, China.

The US is banning some major US chipmaking companies from building advanced technology facilities’’ in China, the Biden administration has announced (opens in new tab).

Sep 9, 2022

Stretchable, self-powered bioelectronics mimic skin in form and function

Posted by in categories: biotech/medical, computing, engineering, health, nanotechnology

Skin-like electronics could seamlessly integrate with the body for applications in health monitoring, medication therapy, implantable medical devices, and biological studies.

With the help of the Polsky Center for Entrepreneurship and Innovation, Sihong Wang, an assistant professor of molecular engineering at the University of Chicago’s Pritzker School of Molecular Engineering, has secured patents for the building blocks of these novel devices.

Drawing on innovation in the fields of semiconductor physics, solid mechanics, and energy sciences, this work includes the creation of stretchable polymer semiconductors and transistor arrays, which provide exceptional electrical performance, high semiconducting properties, and mechanical stretchability. Additionally, Wang has developed triboelectric nanogenerators as a new technology for harvesting energy from a user’s motion—and designed the associated energy storage process.

Sep 8, 2022

Frustrated With Neuralink’s Slow Progress, Elon Musk Approaches Competitor

Posted by in categories: biotech/medical, computing, Elon Musk, neuroscience

Neuralink cofounder and Tesla CEO Elon Musk allegedly approached Synchron, a company that manufactures chips that can be implanted in patient’s brains.

Sep 8, 2022

Cooler Atoms for Better Atomic Clocks

Posted by in categories: computing, particle physics, quantum physics

Over the last decade, improvements in optical atomic clocks have repeatedly led to devices that have broken records for their precision (see Viewpoint: A Boost in Precision for Optical Atomic Clocks). To achieve even better performance, physicists must find a way to cool the atoms in these clocks to lower temperatures, which would allow them to use shallower atom traps and reduce measurement uncertainty. Tackling this challenge, Xiaogang Zhang and colleagues at the National Institute of Standards and Technology, Colorado, have cooled a gas of ytterbium atoms to a record low temperature of a few tens of nanokelvin [1]. As well as enabling the next generation of optical atomic clocks, the researchers say that their technique could be used to cool atoms in neutral-atom quantum computers.

Divalent atoms such as ytterbium are especially suited to precision metrology, as their lack of net electronic spin makes them less sensitive than other species to environmental noise. These atoms can be cooled to the necessary sub-µK temperatures in several ways, but not all techniques are compatible with the requirements of high-precision clocks. For example, evaporative cooling, in which the most energetic atoms are removed, is time-consuming and depletes the atoms. Meanwhile, resolved sideband cooling chills the motion of the atoms only along the axis of the 1D optical trap, leaving their off-axis motion unaffected.

Zhang and colleagues cool their atoms using a laser tuned to ytterbium’s so-called clock transition, whose extremely narrow linewidth means that the atom can theoretically be cooled to below 10 nK. They demonstrate that the precision of a clock employing a shallow lattice trap enabled by such a temperature would not be limited by atoms tunneling between adjacent lattice sites, potentially allowing a measurement uncertainty below 10-19.

Sep 8, 2022

Samsung opens largest chip production line in South Korea

Posted by in categories: computing, electronics

South Korea’s Samsung Electronics has launched a new and its largest chip production line. The new factory was opened in Pyeongtaek, South Korea, 70 km from Seoul.

Here’s what we know

Despite the September 7 launch, the P3 line began operating as early as mid-summer. Samsung started trial production of NAND memory in July. The new facility uses ASML’s lithography machines. It is the dutch company, which is essentially a monopolist in the extreme ultraviolet lithography equipment market.

Sep 7, 2022

“Unlimited Possibilities” — New Law of Physics Could Predict Genetic Mutations

Posted by in categories: biological, computing, cosmology, genetics, information science, mathematics, physics

According to a University of Portsmouth study, a new physics law could allow for the early prediction of genetic mutations.

The study discovers that the second law of information dynamics, or “infodynamics,” behaves differently from the second law of thermodynamics. This finding might have major implications for how genomic research, evolutionary biology, computing, big data, physics, and cosmology develop in the future.

Lead author Dr. Melvin Vopson is from the University’s School of Mathematics and Physics. He states “In physics, there are laws that govern everything that happens in the universe, for example how objects move, how energy flows, and so on. Everything is based on the laws of physics. One of the most powerful laws is the second law of thermodynamics, which establishes that entropy – a measure of disorder in an isolated system – can only increase or stay the same, but it will never decrease.”