Toggle light / dark theme

Circa 2017 face_with_colon_three


To demonstrate this, researchers stored historic audio recordings on these molecules for the first time and then retrieved them with 100 percent accuracy. The experiment showed that DNA not only offers a place to save a dense package of information in a tiny space, but because it can last for hundreds of years, it reduces the risk that it will go out of date or degrade in the way that cassette tapes, compact discs, and even computer hard drives can.

“DNA is intrinsically and exquisitely a stable molecule,” Emily Leproust, CEO of the biotech firm Twist Bioscience, which works on DNA synthesis, told Seeker. Her company collaborated with Microsoft, the University of Washington, and the Montreux Jazz Digital Project on the DNA data feat.

The two performances they stored and retrieved, “Smoke on the Water” by Deep Purple and “Tutu” by Miles Davis, are the first DNA-saved files to be added to UNESCO’s Memory of the World Archive, a collection of audio and visual pieces of cultural significance. Both were performed at the Montreux Jazz Festival, an annual event in Switzerland.

Circa 2017 face_with_colon_three


A new device developed at The Ohio State University can start healing organs in a “fraction of a second,” researchers say.

The technology, known as Tissue Nanotransfection (TNT), has the potential to save the lives of car crash victims and even deployed soldiers injured on site. It’s a dime-sized silicone chip that “injects genetic code into skin cells, turning those skin cells into other types of cells required for treating diseased conditions,” according to a release.

In lab tests, one touch of TNT completely repaired injured legs of mice over three weeks by turning skin cells into vascular cells.

A classic thought experiment in the philosophy of mind is reduplication, in which a person (or her mind) is duplicated such that two or more descendant people of shared mental ancestry now exist where previously there was one. The philosophical quandary is to resolve what happened to the original person’s identity. Did she survive and if so, in which of the resulting people’s minds? Which of the two resulting people is the original and which is a mere copy of denigrated identity status? Alternatively, is there something fundamentally wrong with the wording of such questions, such that we should we adopt a different perspective on the nature of personal identity that offers alternative solutions to the reduplication quandary? Reduplication further arises not only in abstract philosophical musings, but also in the futuristic and variously conceivable (depending on the reader’s tastes), technology of mind uploading, in which a person’s physical brain is emulated via the technology of whole brain emulation. While mind uploading might produce a single result, such as if the original brain is destroyed by the uploading process and only one upload is created, we can also conceive of either nondestructive scenarios (in which the original brain is not destroyed) or scenarios that produce multiple uploads. Either case results in multiple descendant minds, each operating in distinct physical systems (brains or cloned brains, or computers of some sort). The philosophy of personal identity has produced several possible stances on the nature of personal identity. The most popular are body identity and psychological identity, with other options including closest continuer identity, space-time worm identity and branching identity. However, there is always room for new theories to enter the discussion. The way in which blockchains work, and Bitcoin’s mining process and protocol for handling orphaned blocks, suggests a new theory of identity along with a new solution to the reduplication problem. The proposed blockchain solution to personal identity has applications to the handling of the reduplication problem as it may arise during a futuristic mind uploading procedure.

A blockchain holds a hashed transaction ledger, essentially the history of all transactions encoded to prevent any subsequent alteration of the history. In this way, all transactions back to the beginning of the ledger’s history can be confirmed by any interested party. Deceit, fraud, and other attempts to undermine the history simply don’t work, and consequently blockchains enable a variety of interactions with the currently most popular being digital currency. In addition to more conventional applications, blockchains could also be used to assign identity status (original or copy) to the descendent minds of a mind uploading procedure. Each descendant could then venture out into the world confident that their identity status will be honored by all third parties thereafter. Let us call this the blockchain theory of personal identity.

Using existing experimental and computational resources, a multi-institutional team has developed an effective method for measuring high-dimensional qudits encoded in quantum frequency combs, which are a type of photon source, on a single optical chip.

Although the word “qudit” might look like a typo, this lesser-known cousin of the qubit, or , can carry more information and is more resistant to noise—both of which are key qualities needed to improve the performance of quantum networks, quantum key distribution systems and, eventually, the quantum internet.

Classical computer bits categorize data as ones or zeroes, whereas qubits can hold values of one, zero or both—simultaneously—owing to superposition, which is a phenomenon that allows multiple quantum states to exist at the same time. The “d” in qudit stands for the number of different levels or values that can be encoded on a photon. Traditional qubits have two levels, but adding more levels transforms them into qudits.

Molecules could make useful systems for quantum computers, but they must contain individually addressable, interacting quantum bit centers. In the journal Angewandte Chemie, a team of researchers has now presented a molecular model with three different coupled qubit centers. As each center is spectroscopically addressable, quantum information processing (QIP) algorithms could be developed for this molecular multi-qubit system for the first time, the team says.

Computers compute using bits, while quantum computers use quantum bits (or qubits for short). While a conventional bit can only represent 0 or 1, a qubit can store two states at the same time. These superimposed states mean that a quantum computer can carry out parallel calculations, and if it uses a number of qubits, it has the potential to be much faster than a standard computer.

However, in order for the quantum computer to perform these calculations, it must be able to evaluate and manipulate the multi-qubit information. The research teams of Alice Bowen and Richard Winpenny, University of Manchester, UK, and their colleagues have now produced a molecular model system with several separate qubit units, which can be spectroscopically detected and the states of which can be switched by interacting with one another.

Long-Lived Coherent Quantum States in a Superconducting Device for Quantum Information Technology

Scientists have been able to demonstrate for the first time that large numbers of quantum bits, or qubits, can be tuned to interact with each other while maintaining coherence for an unprecedentedly long time, in a programmable, solid-state superconducting processor. This breakthrough was made by researchers from Arizona State University and Zhejiang University in China, along with two theorists from the United Kingdom.

Previously, this was only possible in Rydberg atom.

A series of buzzing, bee-like “loop-currents” could explain a recently discovered, never-before-seen phenomenon in a type of quantum material. The findings from researchers at the University of Colorado Boulder may one day help engineers to develop new kinds of devices, such as quantum sensors or the quantum equivalent of computer memory storage devices.

The quantum material in question is known by the chemical formula Mn3Si2Te6. But you could also call it “” because its manganese and tellurium atoms form a network of interlocking octahedra that look like the cells in a beehive.

Physicist Gang Cao and his colleagues at CU Boulder synthesized this molecular beehive in their lab in 2020, and they were in for a surprise: Under most circumstances, the material behaved a lot like an insulator. In other words, it didn’t allow electric currents to pass through it easily. When they exposed the honeycomb to magnetic fields in a certain way, however, it suddenly became millions of times less resistant to currents. It was almost as if the material had morphed from rubber into metal.