Toggle light / dark theme

MIT scientists produce ‘ultrastable’ materials using new computing method

The resulting materials could be used for capturing greenhouse gases.

MIT researchers have used a computational model to identify about 10,000 possible metal-organic framework MOF structures that they classify as “ultrastable.” These states make them good candidates for applications such as converting methane gas to methanol.

“When people come up with hypothetical MOF materials, they don’t necessarily know beforehand how stable that material is,” said in a statement published on Tuesday Heather Kulik, an MIT associate professor of chemistry and chemical engineering and the senior author of the study.

Plastic transistor amplifies biochemical sensing signal

The molecules in our bodies are in constant communication. Some of these molecules provide a biochemical fingerprint that could indicate how a wound is healing, whether or not a cancer treatment is working or that a virus has invaded the body. If we could sense these signals in real time with high sensitivity, then we might be able to recognize health problems faster and even monitor disease as it progresses.

Now Northwestern University researchers have developed a new technology that makes it easier to eavesdrop on our body’s inner conversations.

While the body’s chemical signals are incredibly faint—making them difficult to detect and analyze—the researchers have developed a new method that boosts signals by more than 1,000 times. Transistors, the building block of electronics, can boost weak signals to provide an amplified output. The new approach makes signals easier to detect without complex and bulky electronics.

A system that augments mixed reality visualizations using smartphones or tablets

Mixed reality (MR) and Augmented Reality (AR) technologies merge the real world with computer-generated elements, allowing users to interact with their surroundings in more engaging ways. In recent years, these technologies have enhanced education and specialized training in numerous fields, helping trainees to test their skills or make better sense of abstract concepts and data.

Researchers at University of Calgary have been trying to develop interfaces and systems that could enhanced MR visualizations. In a paper set to be presented at CHI 2023 LBW, they introduced HoloTouch, a system that can augment mixed reality graphics and charts using smartphones as physical proxies.

“To me, this paper was inspired for the most part by a work that I published during my final undergraduate year,” Neil Chulpongsatorn, one of the researchers who carried out the study, told Tech Xplore “They both originated from my interest in mixed reality interactions for data representations.”

Connecting distant silicon qubits for scaling up quantum computers

In a demonstration that promises to help scale up quantum computers based on tiny dots of silicon, RIKEN physicists have succeeded in connecting two qubits—the basic unit for quantum information—that are physically distant from one another.

Many big IT players—including the likes of IBM, Google and Microsoft—are racing to develop quantum computers, some of which have already demonstrated the ability to greatly outperform conventional computers for certain types of calculations. But one of the greatest challenges to developing commercially viable quantum computers is the ability to scale them up from a hundred or so qubits to millions of qubits.

In terms of technologies, one of the front-runners to achieve large-scale quantum computing is that are a few tens of nanometers in diameter. A key advantage is that they can be fabricated using existing silicon fabrication technology. But one hurdle is that, while it is straightforward to connect two quantum dots that are next to each other, it has proved difficult to link quantum dots that are far from each other.

Canon developing world-first ultra-high-sensitivity ILC equipped with SPAD sensor, supporting precise monitoring through clear color image capture of subjects several km away, even in darkness

The first SPAD camera.


TOKYO, April 3, 2023—Canon Inc. announced today that the company is developing the MS-500, the world’s first1 ultra-high-sensitivity interchangeable-lens camera (ILC) equipped with a 1.0 inch Single Photon Avalanche Diode (SPAD) sensor2 featuring the world’s highest pixel count of 3.2 megapixels3. The camera leverages the special characteristics of SPAD sensors to achieve superb low-light performance while also utilizing broadcast lenses that feature high performance at telephoto-range focal lengths. Thanks to such advantages, the MS-500 is expected to be ideal for such applications as high-precision monitoring.

The MS-500

New IVF method: More expensive, not more effective

The use of time-lapse monitoring in IVF does not result in more pregnancies or shorten the time it takes to get pregnant. This new method, which promises to “identify the most viable embryos,” is more expensive than the classic approach. Research from Amsterdam UMC, published today in The Lancet, shows that time-lapse monitoring does not improve clinical results.

Patients undergoing an IVF treatment often have several usable embryos. The laboratory then makes a choice as to which embryo will be transferred into the uterus. Crucial to this decision is the cell division pattern in the first three to five days of embryo development. In order to observe this, embryos must be removed from the incubator daily to be checked under a microscope. In time-lapse incubators, however, built-in cameras record the development of each embryo. This way embryos no longer need to be removed from the stable environment of the incubator and a computer algorithm calculates which embryo has shown the most optimal growth pattern.

More and more IVF centers, across the world, use time-lapse for the evaluation and selection of embryos. Prospective parents are often promised that time-lapse monitoring will increase their chance of becoming pregnant. Despite frequent use of this relatively expensive method, there are hardly any large clinical studies evaluating the added value of time-lapse monitoring for IVF treatments.

How Your Brain Organizes Information

To try everything Brilliant has to offer—free—for a full 30 days, visit http://brilliant.org/ArtemKirsanov/
The first 200 of you will get 20% off Brilliant’s annual premium subscription.

My name is Artem, I’m a computational neuroscience student and researcher. In this video we talk about cognitive maps – internal models of outside world that the brain to generate flexible behavior that is generalized across contexts.

Patreon: https://www.patreon.com/artemkirsanov.
Twitter: https://twitter.com/ArtemKRSV

OUTLINE:
00:00 — Introduction.
02:08 — Edward Tolman.
03:48 — Zoo of neurons in hippocampal formation.
06:40 — Non spatial mapping.
08:21 — Graph formalism.
12:21 — Latent spaces.
17:22 — Factorized representations.
21:51 — Summary.
24:47 — Brilliant.
26:19 — Outro.

REFERENCES (in no particular order):
1. Behrens, T. E. J. et al. What Is a Cognitive Map? Organizing Knowledge for Flexible Behavior. Neuron 100490–509 (2018).
2. Constantinescu, A. O., O’Reilly, J. X. & Behrens, T. E. J. Organizing conceptual knowledge in humans with a gridlike code. Science 352, 1464–1468 (2016).
3. Aronov, D., Nevers, R. & Tank, D. W. Mapping of a non-spatial dimension by the hippocampal–entorhinal circuit. Nature 543719–722 (2017).
4. Whittington, J. C. R., McCaffary, D., Bakermans, J. J. W. & Behrens, T. E. J. How to build a cognitive map. Nat Neurosci 25, 1257–1272 (2022).
5. Whittington, J., Muller, T., Mark, S., Barry, C. & Behrens, T. Generalisation of structural knowledge in the hippocampal-entorhinal system.

CREDITS: