БЛОГ

Archive for the ‘computing’ category: Page 377

May 16, 2022

Laser Pulses for Ultrafast Signal Processing Could Make Computers a Million Times Faster

Posted by in categories: computing, mobile phones, particle physics

Simulating complex scientific models on the computer or processing large volumes of data such as editing video material takes considerable computing power and time. Researchers from the Chair of Laser Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and a team from the University of Rochester in New York have demonstrated how the speed of fundamental computing operations could be increased in the future to up to a million times faster using laser pulses. Their findings were published on May 11, 2022, in the journal Nature.

The computing speed of today’s computer and smartphone processors is given by field-effect transistors. In the competition to produce faster devices, the size of these transistors is constantly decreased to fit as many together as possible onto chips. Modern computers already operate at the breathtaking speed of several gigahertz, which translates to several billion computing operations per second. The latest transistors measure only 5 nanometers (0.000005 millimeters) in size, the equivalent of not much more than a few atoms. There are limits to how far chip manufacturers can go and at a certain point, it won’t be possible to make transistors any smaller.

Physicists are working hard to control electronics with light waves. The oscillation of a light wave takes approximately one femtosecond, which is one-millionth of one billionth of a second. Controlling electrical signals with light could make the computers of the future over a million times faster, which is the aim of petahertz signal processing or light wave electronics.

May 15, 2022

Forever Battery: QuantumScape’s Holy Grail of Energy

Posted by in categories: computing, mobile phones, quantum physics, sustainability

A “forever battery” is much smaller and more energy-dense than lithium-ion. They’ll change the world and unlock a trillion-dollar revolution.


In this week’s episode, Aaron and I discuss what could be the “holy grail” of energy: the solid-state — or forever battery. Obviously, lithium-ion cells are the status quo of today. And they power pretty much everything, like your smartphone, laptop and electric vehicle.

Continue reading “Forever Battery: QuantumScape’s Holy Grail of Energy” »

May 15, 2022

He thought he was logging in to his cryptocurrency account. Then hackers stole his life savings

Posted by in categories: computing, cryptocurrencies

Last Christmas, Philip Martin sat down at his computer to check his cryptocurrency balance. Before he knew what was happening, hackers stole his life savings.

May 14, 2022

Fastest logic gates ever made could make computers 1,000,000x faster

Posted by in categories: computing, materials

Researchers have developed a new kind of logic gate, the fundamental building block from which computers are made. Depending on the kind of logic gate and its rules, two inputs of any combination of 0 and 1 result in an output of either a 1 or 0. A single chip used in creating electronic components like processors and memory modules can contain billions of logic gates.

The newly developed logic gate, which demonstrates the viability of “lightwave electronics,” works orders of magnitudes faster than traditional logic gates. Ordinary logic gates have an input processing delay on the order of nanoseconds, but the new logic gates process inputs in only femtoseconds, a million times shorter than nanoseconds.

The new gates comprise two gold electrodes connected with a graphene wire, which is then zapped with laser pulses, adjusting the pulse’s phase to produce outputs of either a one or a 0. The shortened processing time for the new logic gates means that computers built on the technology would have their processing speeds measured on Petahertz (PHz) scale compared to the current Gigahertz (GHz).

May 14, 2022

The future of desalination? A fast, efficient, selective membrane for purifying saltwater

Posted by in categories: biotech/medical, computing, nanotechnology

Water scarcity is a growing problem around the world. Desalination of seawater is an established method to produce drinkable water but comes with huge energy costs. For the first time, researchers use fluorine-based nanostructures to successfully filter salt from water. Compared to current desalination methods, these fluorous nanochannels work faster, require less pressure and less energy, and are a more effective filter.

If you’ve ever cooked with a nonstick Teflon-coated frying pan, then you’ve probably seen the way that wet ingredients slide around it easily. This happens because the key component of Teflon is fluorine, a lightweight element that is naturally repelling, or hydrophobic. Teflon can also be used to line pipes to improve the flow of water. Such behavior caught the attention of Associate Professor Yoshimitsu Itoh from the Department of Chemistry and Biotechnology at the University of Tokyo and his team. It inspired them to explore how pipes or channels made from fluorine might operate on a very different scale, the nanoscale.

“We were curious to see how effective a fluorous nanochannel might be at selectively filtering different compounds, in particular, water and salt. And, after running some complex computer simulations, we decided it was worth the time and effort to create a working sample,” said Itoh. “There are two main ways to desalinate water currently: thermally, using heat to evaporate seawater so it condenses as pure water, or by , which uses pressure to force water through a that blocks salt. Both methods require a lot of energy, but our tests suggest fluorous nanochannels require little energy, and have other benefits too.”

May 14, 2022

Scientist bridges the gap between quantum simulators and quantum computers

Posted by in categories: computing, quantum physics

A researcher from Skoltech has filled in the gaps connecting quantum simulators with more traditional quantum computers, discovering a new computationally universal model of quantum computation, the variational model. The paper was published as a Letter in the journal Physical Review A. The work made the Editors’ Suggestion list.

A is built to share properties with a target quantum system we wish to understand. Early quantum simulators were ‘dedicated’—that means they could not be programmed, tuned or adjusted and so could mimic one or very few target systems. Modern quantum simulators enable some control over their settings, offering more possibilities.

In contrast to quantum simulators, the long-promised quantum computer is a fully programmable quantum system. While building a fully programmable quantum remains elusive, noisy quantum processors that can execute short quantum programs and offer limited programmability are now available in leading laboratories around the world. These quantum processors are closer to the more established quantum simulators.

May 14, 2022

Xanadu announces programmable photonic quantum chip able to execute multiple algorithms

Posted by in categories: computing, information science, quantum physics

A team of researchers and engineers at Canadian company Xanadu Quantum Technologies Inc., working with the National Institute of Standards and Technology in the U.S., has developed a programmable, scalable photonic quantum chip that can execute multiple algorithms. In their paper published in the journal Nature, the group describes how they made their chip, its characteristics and how it can be used. Ulrik Andersen with the Technical University of Denmark has published a News & Views piece in the same journal issue outlining current research on quantum computers and the work by the team in Canada.

Scientists around the world are working to build a truly useful quantum that can perform calculations that would take traditional computers millions of years to carry out. To date, most such efforts have been focused on two main architectures—those based on superconducting electrical circuits and those based on trapped-ion technology. Both have their advantages and disadvantages, and both must operate in a supercooled environment, making them difficult to scale up. Receiving less attention is work using a photonics-based approach to building a quantum computer. Such an approach has been seen as less feasible because of the problems inherent in generating quantum states and also of transforming such states on demand. One big advantage photonics-based systems would have over the other two architectures is that they would not have to be chilled—they could work at room temperature.

In this new effort, the group at Xanadu has overcome some of the problems associated with photonics-based systems and created a working programmable photonic quantum chip that can execute multiple algorithms and can also be scaled up. They have named it the X8 photonic quantum processing unit. During operation, the is connected to what the team at Xanadu describe as a “squeezed light” source—infrared laser pulses working with microscopic resonators. This is because the new system performs continuous variable quantum computing rather than using single-photon generators.

May 14, 2022

J. Lyding & L. Grill | Silicon-Based Nanotechnology & Manipulating Single Molecules on Surfaces

Posted by in categories: biotech/medical, computing, nanotechnology, quantum physics

Foresight Molecular Machines Group.
Program & apply to join: https://foresight.org/molecular-machines/

Joe Lyding.
Silicon-Based Nanotechnology: There’s Still Plenty of Room at the Bottom.
Joe Lyding is a distinguished professor in Electrical and Computer Engineering at the University of Illinios. His career includes constructing the first atomic resolution scanning tunneling microscope, discovering new industrial uses for deuterium, studying quantum size effects down to 2nm lateral graphene dimensions, and much more. His current research is focused on carbon nanoelectronics. Specifically using carbon nanoelectronics based on carbon nanotubes and graphene for future semiconducting device applications.

Continue reading “J. Lyding & L. Grill | Silicon-Based Nanotechnology & Manipulating Single Molecules on Surfaces” »

May 13, 2022

NVIDIA has open-sourced its Linux GPU kernel drivers

Posted by in categories: computing, security, sustainability, transportation

NVIDIA has published the source code of its Linux kernel modules for the R515 driver, allowing developers to provide greater integration, stability, and security for Linux distributions.

The source code has been published to NVIDIA’s GitHub repository under a dual licensing model that combines the GPL and MIT licenses, making the modules legally re-distributable.

The products supported by these drivers include all models built on the Turing and Ampere architecture, released after 2018, including the GeForce 30 and GeForce 20 series, the GTX 1,650 and 1,660, and data center-grade A series, Tesla, and Quadro RTX.

May 13, 2022

New AI-powered light system could spell the end of traffic jams

Posted by in categories: computing, transportation

Deep reinforcement learning.

The system is so efficient because it uses deep reinforcement learning, meaning it actually adapts its processes when it is not doing well and continues improving when it makes progress.

“We have set this up as a traffic control game. The program gets a ‘reward’ when it gets a car through a junction. Every time a car has to wait or there’s a jam, there’s a negative reward. There’s actually no input from us; we simply control the reward system,” said Dr. Maria Chli, a reader in Computer Science at Aston University.